Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 5Q
In the arrangement of Fig. 33-l5a, start with light that is initially polarized parallel to the x axis, and write the ratio of its final intensity I3 to its initial intensity I0 as I3/I0 = A cosn θ. What are A, n. and θ if we rotate the polarizing direction of the first sheet (a) 60° counterclockwise and (b) 90° clockwise from what is shown?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
J
W
E
10. Three polarizing disks have planes that are parallel and centered on a common axis. The direction of the transmission
axis (dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis
of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with intensity S, =
820 W/m2. Calculate the transmitted intensity if 0₁ = 21.0°, 0₂ = 34.0°, and 03 = 44.0°.
X 658.06 W/m²
R
92
5
T
6
Horizontal
MacBook Air
U
8
61
A system of three polarizing sheets is placed in the path of initially unpolarized light. The polarizing direction of the first sheet, P1, is parallel to the y-axis, that of the second sheet, P2, is 60o counterclockwise from the y-axis, and that of the third sheet, P3, is parallel to the x-axis.
Determine the fraction of the initial intensity Io of the light emerges from the system, i.e. ratio I0/I3.
A. 0.092
B. 3.19
C. 10.9
D. 6.66
Initially unpolarized light is sent along the z-axis into a system of three polarizing sheets placed perpendicular to the z-axis and whose polarizing angles with respect to y-axis are 22º (first sheet), 89º (second sheet), and 56º (the last sheet).
What percentage of the initial light intensity is transmitted by the system?
Express your answer as a percentage, to at least one digit after the decimal.
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Additional Science Textbook Solutions
Find more solutions based on key concepts
A meteorite hits the upper atmosphere at 3000m/s , where the pressure is 0.1 atm and the temperature is 40C . H...
Fundamentals Of Thermodynamics
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
1. A glass rod is charged to +8.0 nC by rubbing.
a. Have electrons been removed from the rod or proto...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4.1 Write the symbols for the following elements.
a. copper
b. platinum
c. calcium
d. manganese
e. Iron
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The light incident on polarizing sheet P1is linearly polarized at an angle of 30.00 with respect to the transmission axis of P1 Sheet P2is placed so that its axis is parallel to the polarization axis of the incident light, that is, also at 30.0° with respect to P1 . (a) What fraction of the incident light passes through P1 ? (b) What fraction of the incident light is passed by the combination? (c) By rotating P2 , a maximum in transmitted intensity is obtained. What is the ratio of this maximum intensity to the intensity of transmitted light when P2 is at 30.0° with respect to P1 ?arrow_forwardA linearly polarized microwave of wavelength 1.50 cm is directed along the positive x axis. The electric field vector has a maximum value of 175 V/m and vibrates in the xy plane. Assuming the magnetic field component of the wave can be written in the form B = Bmax sin (kx t), give values for (a) Bmax, (b) k, and (c) . (d) Determine in which plane the magnetic field vector vibrates. (e) Calculate the average value of the Poynting vector for this wave. (f) If this wave were directed at normal incidence onto a perfectly reflecting sheet, what radiation pressure would it exert? (g) What acceleration would be imparted to a 500-g sheet (perfectly reflecting and at normal incidence) with dimensions of 1.00 m 0.750 m?arrow_forwardThree polarizing sheets are placed together such that the transmission axis of the second sheet is oriented at 25.0° to the axis of the first, whereas the transmission axis of the third sheet is oriented at 40.0° (in the same sense) to the axis of the first. What fraction of an intensity of an incident unpolarized beam is transmitted by the combination?arrow_forward
- Two polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardThe magnetic field of a plane electromagnetic wave moving along the z axis is given by B =B0(coskz+t) j , where B0=5.001010 and k=3.10102m-1 . (a) Write an expression for the electric field associated with the wave. (b) What are the frequency and the wavelength of the wave? (C) What is its average Poynting vector?arrow_forwardInitially unpolarized light is sent along the z-axis into a system of three polarizing sheets placed perpendicular to the z-axis and whose polarizing angles with respect to y-axis are 22º (first sheet), 89º (second sheet), and 56º (the last sheet). What percentage of the initial light intensity is transmitted by the system? Express your answer as a percentage, to at least one digit after the decimal.arrow_forward
- In Figure (a) below, unpolarized light is sent into a system of three polarizing sheets.The angles 0₁, 02, and 83 of the polarizing directions are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale). Angles 0₁ and 83 are fixed, but angle 82 can be varied. Figure (b) gives the intensity of the light emerging from sheet 3 as a function of 0₂. (The scale of the intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the three-sheet system when 82 = 92⁰? Number Units 60° (b) 120° 180-arrow_forwardSuppose a plane-polarised light wave is travelling in the z direction, its electric field vector E is aligned with the x direction and its magnetic field vector H is aligned in the y direction.The plane of polarisation is Select one: The xy plane. The yz plane. The xz plane.arrow_forwardA beam of polarized light is sent into a system of two polarizing sheets. Relative to the polarization direction of that incident light, the polarizing directions of the sheets are at angles u for the first sheet and 90° for the second sheet. If 0.10 of the incident intensity is transmitted by the two sheets, what is u?arrow_forward
- Polarized light is incident on 7 polarizing sheets. the axis of the first polarized sheet makes an agle theta with the plane of polarization. each subsequent sheet has an axis that is rotated by an angle theta from that of adjacent sheets. find theta if 91% of the incident intensity is transmitted by the sheets.arrow_forwardOne way to produce a beam of polarized light with intensity I and polarization angle θ would be to pass unpolarized light with intensity I0 through a polarizer whose transmission axis is oriented such that θTA=θ. How large must I0 be if the transmitted light is to have intensity I? Express your answer as a decimal number times the symbol I. For example, if I0=(1/4)I, enter 0.25 * I.arrow_forwardUnpolarized light passes first through a polarizing filter with a vertical axis then through a second filter with its axis 51o from vertical. If the intensity of the unpolarized light is 620 W/m2, what is the intensity of the light after it passes through the second filter? Please give your answer in W/m2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY