Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 49P
Figure 33-49 shows light reflecting from two perpendicular reflecting surfaces A and B. Find the angle between the incoming ray i and the outgoing ray rʹ.
Figure 33-49 Problem 49.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
61 Go In Fig. 33-59, light initially
in material 1 refracts into material 2,
crosses that material, and is then
incident at the critical angle on the
interface between materials 2 and 3.
The indexes of refraction are
1 = 1.60, n2 = 1.40, and n3 = 1.20.
(a) What is angle e? (b) If e is in-
creased, is there refraction of light
into material 3?
79 SSM (a) Prove that a ray of light incident on the surface of a
sheet of plate glass of thickness t emerges from the opposite face
parallel to its initial direction but displaced sideways, as in Fig. 33-69.
(b) Show that, for small angles of incidence 0, this displacement is
given by
п - 1
x = te-
п
where n is the index of refraction of the glass and e is measured in
radians.
Figure 33-69 Problem 79.
63 In Fig. 33-60, light enters a 90°
triangular prism at point P with inci-
dent angle 6, and then some of it
refracts at point Q with an angle of
refraction of 90°. (a) What is the in-
dex of refraction of the prism in
terms of 6? (b) What, numerically,
is the maximum value that the index of refraction can have? Does
light emerge at Q if the incident angle at P is (c) increased slightly
and (d) decreased slightly?
Figure 33-60 Problem 63.
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
17.58 calculate the solubility of LaF3 in grams per liter in
a. pure water,
b. 0.010 M KF solution.
...
Chemistry: The Central Science (14th Edition)
19. A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 6.0 s, coasts for 2.0s, and then slow...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- is 90°. 48 In Fig. 33-48a, a light ray in water is incident at angle on a boundary with an underlying material, into which some of the light refracts. There are two choices of underlying material. For each, the angle of refraction 02 versus the incident angle given in Fig. 33-48b. The vertical axis scale is set by 02 Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refraction of (c) material 1 and (d) material 2? Water (a) 0₂ 02s 0° 45° (b) Figure 33-48 Problem 48. 2 90° =arrow_forward40 0 In Fig. 33-42, unpolarized light is sent into a system of three polarizing sheets. The angles 61, 62, and 6, of the polariz- ing directions are measured counterclockwise from the positive direction of the y axis (they are not drawn to scale). Angles 0, and 0z are fixed, but angle 6, can be varied. Figure 33-44 gives the intensity of the light emerging from sheet 3 as a function of 6. (The scale of the intensity axis is not indicated.) What percentage of the light's initial intensity is transmitted by the three-sheet system when 0, = 90°? 0° 60° 120° 180° Figure 33-44 Problem 40.arrow_forward*67 O In the ray diagram of Fig. 33-63, where the angles are not drawn to scale, the ray is incident at the critical angle on the inter- face between materials 2 and 3. Angle o = 60.0°, and two of the in- dexes of refraction are n = 1.70 and n2 = 1.60. Find (a) index of refraction n3 and (b) angle 0. (c) If øi decreased, does light refract into material 3? Figure 33-63 Problem 67.arrow_forward
- 46 In Fig. 33-47a, a light ray in an underlying material is incident at angle on a boundary with water, and some of the light refracts into the water. There are two choices of underlying ma- terial. For each, the angle of refraction 02 versus the incident angle is given in Fig. 33-47b. The horizontal axis scale is set by 0₁s = 90°. Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refrac- tion of (c) material 1 and (d) material 2? Water (a) 0₂ 90° 45° 0° 1 (b) Figure 33-47 Problem 46. -0₁ 01sarrow_forward6 In Fig. 33-29, unpolarized light is sent into a system of five polarizing sheets. Their polarizing directions, -x measured counterclockwise from the positive direction of the y axis, are the following: sheet 1, 35°; sheet 2, 0°; sheet 3, 0°; sheet 4, 110°; sheet 5, 45°. Sheet 3 is then rotated 180° counter- clockwise about the light ray. During that rotation, at what angles (mea- sured counterclockwise from the y axis) is the transmission of light through the system eliminated? Figure 33-29 Question 6.arrow_forward53 SSM www ILW In Fig. 33-53, a ray is incident on one face of a triangular glass prism in air. The angle of incidence e is chosen so that the emerging ray also makes the same angle e with the nor- mal to the other face. Show that the index of refraction n of the glass prism is given by sin ( + 6) sin o where o is the vertex angle of the prism and is the deviation angle, the total angle through which the beam is turned in passing through the prism. (Under these conditions the deviation angle u has the smallest possible value, which is called the angle of mini- mum deviation.) Figure 33-53 Problems 53 and 64.arrow_forward
- 12 In Fig. 33-35, light travels from material a, through three layers of other materials with surfaces parallel to one another, and then back into an- other layer of material a. The refrac- tions (but not the associated reflec- tions) at the surfaces are shown. Rank the materials according to index of re- fraction, greatest first. (Hint: The par- allel arrangement of the surfaces al- lows comparison.) Figure 33-35 Question 12.arrow_forward1 82 I 9 Figure 33-42 y Xarrow_forward104 In Fig. 33-77, an albatross glides at a constant 15 m/s horizon- tally above level ground, moving in a vertical plane that contains the Sun. It glides toward a wall of height h = 2.0 m, which it will just barely clear. At that time of day, the angle of the Sun relative to the ground is Figure 33-77 Problem 104. e = 30°. At what speed does the shadow of the albatross move (a) across the level ground and then (b) up the wall? Suppose that later a hawk happens to glide along the same path, also at 15 m/s. You see that when its shadow reaches the wall, the speed of the shadow noticeably increases. (c) Is the Sun now higher or lower in the sky than when the alba- tross flew by earlier? (d) If the speed of the hawk's shadow on the wall is 45 m/s, what is the angle 0 of the Sun just then? Sunrayarrow_forward
- 75 SSM In Fig. 33-65, a light ray en- ters a glass slab at point A at incident angle e = 45.0° and then undergoes total internal reflection at point B. Air (The reflection at A is not shown.) What minimum value for the index of refraction of the glass can be in- ferred from this information? Incident ray Glassarrow_forward-55 O SSM In Fig. 33-55, a 2.00- m-long vertical pole extends from the bottom of a swimming pool to a point 50.0 cm above the water. Sunlight is incident at angle e= Blocked sunrays 55.0°. What is the length of the shadow of the pole on the level bot- tom of the pool?arrow_forward*66 o In Fig. 33-62, a light ray in air is incident at angle 6, on a block of transparent plastic with an index of refraction of 1.56. The dimen- sions indicated are H= 2.00 cm and W = 3.00 cm. The light passes through the block to one of its sides and there undergoes reflection (in- side the block) and possibly refraction (out into the air). This is the point of first reflection. The re- flected light then passes through the block to another of its sides-a point of second reflection. If 6 = 40°, on which side is the point of (a) first reflection and (b) second reflection? If there is refraction at the point of (c) first reflection and (d) second reflection, give the angle of refraction; if not, answer "none." If 61 = 70°, on which side is the point of (e) first reflection and (f) second reflection? If there is refrac- tion at the point of (g) first reflection and (h) second reflection, give the angle of refraction; if not, answer “none." н Figure 33-62 Problem 66.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY