Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 2Q
To determine
To find:
Which of the four curves best shows the intensity of the light through the system during rotation of the second sheet?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
82 In Fig. 33-70, unpolarized light
is sent into the system of three po-
larizing sheets, where the polarizing
directions of the first and third
sheets are at angles 6 = 30° (coun-
terclockwise) and 0z = 30° (clock-
wise). What fraction of the initial
light intensity emerges from the
system?
%3!
6 In Fig. 33-29, unpolarized light is
sent into a system of five polarizing
sheets. Their polarizing directions,
-x
measured counterclockwise from the
positive direction of the y axis, are the
following: sheet 1, 35°; sheet 2, 0°;
sheet 3, 0°; sheet 4, 110°; sheet 5, 45°.
Sheet 3 is then rotated 180° counter-
clockwise about the light ray. During
that rotation, at what angles (mea-
sured counterclockwise from the y
axis) is the transmission of light
through the system eliminated?
Figure 33-29 Question 6.
40 0 In Fig. 33-42, unpolarized light is sent into a system
of three polarizing sheets. The angles 61, 62, and 6, of the polariz-
ing directions are measured counterclockwise from the positive
direction of the y axis (they are not drawn to scale). Angles 0, and
0z are fixed, but angle 6, can be varied. Figure 33-44 gives the
intensity of the light emerging from sheet 3 as a function of 6.
(The scale of the intensity axis is not indicated.) What percentage
of the light's initial intensity is transmitted by the three-sheet
system when 0, = 90°?
0°
60°
120°
180°
Figure 33-44 Problem 40.
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- 63 In Fig. 33-60, light enters a 90° triangular prism at point P with inci- dent angle 0, and then some of it refracts at point Q with an angle of refraction of 90°. (a) What is the in- dex of refraction of the prism in terms of 0? (b) What, numerically, Air Q Figure 33-60 Problem 63. is the maximum value that the index of refraction can have? Does light emerge at Q if the incident angle at P is (c) increased slightly and (d) decreased slightly?arrow_forward1 82 I 9 Figure 33-42 y Xarrow_forward79 SSM (a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness t emerges from the opposite face parallel to its initial direction but displaced sideways, as in Fig. 33-69. (b) Show that, for small angles of incidence 0, this displacement is given by п - 1 x = te- п where n is the index of refraction of the glass and e is measured in radians. Figure 33-69 Problem 79.arrow_forward
- is 90°. 48 In Fig. 33-48a, a light ray in water is incident at angle on a boundary with an underlying material, into which some of the light refracts. There are two choices of underlying material. For each, the angle of refraction 02 versus the incident angle given in Fig. 33-48b. The vertical axis scale is set by 02 Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refraction of (c) material 1 and (d) material 2? Water (a) 0₂ 02s 0° 45° (b) Figure 33-48 Problem 48. 2 90° =arrow_forward*67 O In the ray diagram of Fig. 33-63, where the angles are not drawn to scale, the ray is incident at the critical angle on the inter- face between materials 2 and 3. Angle o = 60.0°, and two of the in- dexes of refraction are n = 1.70 and n2 = 1.60. Find (a) index of refraction n3 and (b) angle 0. (c) If øi decreased, does light refract into material 3? Figure 33-63 Problem 67.arrow_forward76 Go In Fig. 33-66, unpolarized light with an intensity of 25 W/m2 is sent into a system of four polarizing sheets with polarizing directions at angles = 40°, 2 - 20°, 0 = 20°, and 04 = 30°. What is the intensity of the light that emerges from the system? Figure 33-65 Pr %3! -X-arrow_forward
- 03 02 0₁ y -X Figure 33-40 Problems 32 and 33.arrow_forward63 In Fig. 33-60, light enters a 90° triangular prism at point P with inci- dent angle 6, and then some of it refracts at point Q with an angle of refraction of 90°. (a) What is the in- dex of refraction of the prism in terms of 6? (b) What, numerically, is the maximum value that the index of refraction can have? Does light emerge at Q if the incident angle at P is (c) increased slightly and (d) decreased slightly? Figure 33-60 Problem 63.arrow_forward46 In Fig. 33-47a, a light ray in an underlying material is incident at angle on a boundary with water, and some of the light refracts into the water. There are two choices of underlying ma- terial. For each, the angle of refraction 02 versus the incident angle is given in Fig. 33-47b. The horizontal axis scale is set by 0₁s = 90°. Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refrac- tion of (c) material 1 and (d) material 2? Water (a) 0₂ 90° 45° 0° 1 (b) Figure 33-47 Problem 46. -0₁ 01sarrow_forward
- 12 In Fig. 33-35, light travels from material a, through three layers of other materials with surfaces parallel to one another, and then back into an- other layer of material a. The refrac- tions (but not the associated reflec- tions) at the surfaces are shown. Rank the materials according to index of re- fraction, greatest first. (Hint: The par- allel arrangement of the surfaces al- lows comparison.) Figure 33-35 Question 12.arrow_forward61 Go In Fig. 33-59, light initially in material 1 refracts into material 2, crosses that material, and is then incident at the critical angle on the interface between materials 2 and 3. The indexes of refraction are 1 = 1.60, n2 = 1.40, and n3 = 1.20. (a) What is angle e? (b) If e is in- creased, is there refraction of light into material 3?arrow_forward-55 O SSM In Fig. 33-55, a 2.00- m-long vertical pole extends from the bottom of a swimming pool to a point 50.0 cm above the water. Sunlight is incident at angle e= Blocked sunrays 55.0°. What is the length of the shadow of the pole on the level bot- tom of the pool?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning