Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 94P
To determine
To find:
For point P,
a) Magnitude of electric field.
b) Magnitude of magnetic field.
c) The pointing vector.
d) Direction of Poynting vector
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a long, straight copper wire (diameter 2.50 mm and resistance 1.00 ohm per 300 m) carries a uniform current of 25.0 A in the positive x direction. For point P on the wire’s surface, calculate the magnitudes of (a) the electric field , (b) the magnetic field , and (c) the Poynting vector , and (d) determine the direction of S.
*.4 Go Two wires, parallel to a
z axis and a distance 4r apart,
carry equal currents i in oppo- Wire 17
Wire 2
7
site directions, as shown in
-x
Fig. 32-28. A circular cylinder of
radius r and length L has its
axis on the z axis, midway be-
tween the wires. Use Gauss' law
-2r
2r
Figure 32-28 Problem 4.
for magnetism to derive an ex-
pression for the net outward
magnetic flux through the half of the cylindrical surface above the
x axis. (Hint: Find the flux through the portion of the xz plane that
lies within the cylinder.)
A cylindrical conductor with a circular cross section has a radius a and a resistivity r and carries a constant current I.
(a) What are the magnitude and direction of the electric-field vector E→ at a point just inside the wire at a distance a from the axis?
(b) What are the magnitude and direction of the magnetic-field vector B→ at the same point? (
c) What are the magnitude and direction of the Poynting vector S→ at the same point? (The direction of S→ is the direction in which electromagnetic energy flows into or out of the conductor.)
(d) Use the result in part (c) to find the rate of flow of energy into the volume occupied by a length l of the conductor. (Hint: Integrate S→ over the surface of this volume.) Compare your result to the rate of generation of thermal energy in the same volume. Discuss why the energy dissipated in a current-carrying conductor, due to its resistance, can be thought of as entering through the cylindrical sides of the conductor
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- A long, straight, cylindrical conductor contains a cylindrical cavity whose axis is displaced by n from the axis of the conductor, as shown in the accompanying figure. The current density in the conductor is given by J=J0k, where J0 is a constant and k is along the axis of the conductor. Calculate the magnetic field at an arbitrary point P in the cavity by superimposing the field of a solid cylindrical conductor with radius R1and current density Jonto the field of a solid cylindrical conductor with radius R2and current density J . Then use the fact that the appropriate azimuthal unit vectors can be expressed as 1=kr1and 2=kr2 to show that everywhere inside the cavity the magnetic field is given by the constant B=120J0ka , where a=r1r2 and r1=r1r1 is the position of P relative to the center of the conductor and r2=r2r2 is the position of P relative to the center of the cavity.arrow_forwardTwo long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardIn the figure, a long, straight copper wire (diameter 2.58 mm and resistance 1.14 Q per 320 m) carries a uniform current of 24.0 A in the positive x direction. For point P on the wire's surface, calculate the magnitudes of (a) the electric field E ,(b) the magnetic field B , and (c) the Poynting vector Ś ,and (d) determine the direction of Ś . (a) Number Units (b) Number i Units (c) Number Units > >arrow_forward
- An electric current is flowing through a long cylindrical conductor with radius a = 0.15 m. The current density J = 2.5 A/m2 is uniform in the cylinder. In this problem, we consider an imaginary cylinder with radius r around the axis AB. Part (e) When r is greater than a, express the current inside the imaginary cylinder in terms of r, a, and J. Part (f) Express the magnitude of the magnetic field, B, at r > a in terms of I and r. Part (g) Express B in terms of J, a and r. Part (h) For r = 2 a, calculate the numerical value of B in Tesla. I already did the first few parts. I am most confused on parts e and g, how to derive the equations. Thanks so much!arrow_forwardIn the figure, a long, straight copper wire (diameter 2.46 mm and resistance 0.807 2 per 250 m) carries a uniform current of 25.0 A in the positive x direction. For point P on the wire's surface, calculate the magnitudes of (a) the electric field E, (b) the magnetic field B, and (c) the Poynting vector 3, and (d) determine the direction of S. y P (a) Number i (b) Number i (c) Number (d) -Y i Units V/m Units T Units W/m^arrow_forwardPhysics In the figure a uniform electric field is directed out of the page within a circular region of radius R = 4.00 cm. The magnitude of the electric field is given by E = (3.50 × 10-3 V/m•s)t, where t is in seconds. What is the magnitude of the magnetic field that is induced at radial distances (a)3.00 cm and (b)5.50 cm?arrow_forward
- A straight right-circular cylindrical solenoid of radius R and length L> R is wound wvith n turns of wire per unit length. The current / in the windings is rising slowly. (a) Calculate the electric field (magnitude and direction) at a distance rarrow_forwardElectromagnetic fields and wavesarrow_forwardA circular region of radius R = 3.00cm has a uniform electric flux directed out of the plane of the page. What is the magnitude of the induced magnetic field at a radial distance r = 2.00cm if :(a) the electric flux is of the form Φ? = (3.00 mV ⋅ m/s)t (b) the electric field is of the form E = (4.50 × 10−3 V ⋅ m/s)t (c) the electric field is of the form ? = (0.500 V/m⋅s ) (1-r/R )t.arrow_forwardConsider hollow cylindrical conducting shell of outer radius a and inner radius b carrying a uniformly distributed current , so ¿ = J/A where A is the cross sectional area of the cylindrical shell. A cross sectional view of the conductor is shown in Fig. 1(a) Use Ampére's law for the following. (a) Calculate the magnetic field in the hollow region of the conductor, r < b. (b) Calculate the magnetic field outside the conductor, r > a. (c) Show that the magnetic field inside the conductor for b < r < a is given byarrow_forwardA finite-length wire with current I = 5 A is positioned along the z-axis and is centered at the origin as shown in the figure. The current flows in the +z direction. The wire's length is l=10 cm. Determine the magnetic field intensity vector H at the point P(-1,0,0) cm using the superposition principle. Express the H vector in terms of (a) rectangular and (b) cylindrical components. dH into dl do the pagearrow_forwardProblem 1: A time-dependent but otherwise uniform magnetic field of magnitude Bo(t) is confined in a cylindrical region of radius 6.5 cm. Initially the magnetic field in the region is pointed out of the page and has a magnitude of 1.5 T, but it is decreasing at a rate of 28.5 G/s. Due to the changing magnetic field, an electric field will be induced in this space which causes the acceleration of charges in the region Part (a) What is the direction of the acceleration of a proton placed at the point P, 2.5 cm from the center? Counterclockwise V Correct! Part (b) What is the magnitude of this acceleration, in meters per square second?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning