Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 25P
To determine
To prove:
where
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A plane harmonic electromagnetic wave is
propagating in space along the y axis. If the E-
field is linearly polarised in the yz-plane and if
lamda= 500 nm, what is an expression for the
corresponding B field when the irradiance is
53.2 W/m2?
A particle in the solar system is under the combined influence of the Sun’s gravitational attraction and the radiation force due to the Sun’s rays. Assume that the particle is a sphere of density 1.0 * 10^3 kg/m3 and that all the incident light is absorbed. (a) Show that, if its radius is less than some critical radius R, the particle will be blown out of the solar system. (b) Calculate the critical radius.
A plane electromagnetic wave of frequency 20 GHz moves in the positive y-axis direction such that its electric field is pointed along the z-axis. The amplitude of the electric field is 10 V/m. The start of time is chosen so thatat t = 0 , the electric field has a value 10 V/m at the origin. (a) Write the wave function that will describe the electric field wave. (b) Find the wave function that will describe the associated magnetic field wave.
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- Why is t1 radiation pressure of an electromagnetic wave on a perfectly reflecting surface twice as large as the pressure on a perfectly absorbing surface?arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forwardA flat, sine-shaped electromagnetic wave propagating in an insulating material with a fixed isolation of 2 = K. If the value of the angular frequency of this wave is equal to w = 3 x 10^7 rad / sec. Calculate the following: (1) the characteristic impedance of this wave Z (2) its wave number K (3) the velocity of the wave in this dielectric medium 0 1)arrow_forward
- At what distance from a 100-W electromagnetic wave point source does Emax = 15.0 V/m?arrow_forwardA plane electromagnetic wave has an intensity of 750W/m2. A flat, rectangular surface of dimensions 50 cm x 100 cm is placed perpendicular to the direction of the wave. The surface absorbs half of the energy and reflects half. Calculate (a) the total energy absorbed by the surface in 1.00 min and (b) the momentum absorbed in this time.arrow_forwardProve, for a plane electromagnetic wave that is normally incident on a flat surface, that the radiation pressure on the surface is equal to the energy density in the incident beam. (This relation between pressure and energy density holds no matter what fraction of the incident energy is reflected.)arrow_forward
- Consider a sinusoidal plane electromagnetic wave propagating in +z direction in vacuum. If the amplitude of the electric field component of the wave is (6 V/m)î, what is the magnitude and the direction of the magnetic field component?arrow_forward(a) The magnetic field intensity H of an electromagnetic wave propagating in free space in the z-direction is described in phasor form by H = îH¸e¯i where B is its phase constant. Determine the corresponding electric field from Ampere's law. A long straight wire in air carries a current of 5 A. What is the magnetic field intensity H at a radial distance of 5 m from the wire? (b) A battery of open circuit voltage 2 V and internal resistance 50 2 is connected via a rapid switch to a transmission line of characteristic impedance 50 N terminated in a load of 100 N. Calculate the voltage and current on the line just after the switch is closed, explaining your answer carefully. (c)arrow_forwardSuppose a spherical particle of mass m and radius R in space absorbs light of intensity I for time t. (a) How much work does the radiation pressure do to accelerate the particle from rest in the given time it absorbs the light? (b)How much energy carried by the electromagnetic waves is absorbed by the particle over this time based on the radiant energy incident on the particle?arrow_forward
- When electromagnetic radiation strikes perpendicular to a flat surface, a totally absorbing surface feels radiation pressure I0/c, where I0 is the intensity of incident electromagnetic radiation. A totally reflecting surface feels twice that pressure. More generally, a surface absorbs a proportion e of the incident radiation and reflects a complementary proportion, 1 - e, where e is the emissivity of the surface. Note that 0 ≤ e ≤ 1. (a) Determine the radiation pressure prad in terms of I0 and e. (b) Consider cosmic dust particles in outer space at a distance of 1.5 x 1011 m from the sun, where Isun = 1.4 kW/m2 . We can model these particles as tiny disks with e = 0.61, diameter 8.0 µm and mass 1.0 x 10-10 grams, all oriented perpendicular to the sun’s rays. What is the force on one of these particles that is exerted by the radiation from the sun? (c) What is the ratio of this force to the attractive force of gravity exerted by the sun on the particle?arrow_forwardAn oscillating dipole antenna 1.70 m long with a maximum 36.0 mV potential creates a 500 Hz electromagnetic wave. (a) What is the maximum electric field strength created? (b) What is the corresponding maximum magnetic field strength in the electromagnetic wave? (c) What is the wavelength of the electromagnetic wave?arrow_forwardA certain 60.0 Hz AC power line radiates an electromagnetic wave having a maximum electric field strength of 45.2 kV/m. (a) What is the wavelength of this very low frequency electromagnetic wave? (b) What is its maximum magnetic field strength?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning