Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 19P
To determine
To find:
The pressure exerted on the plasma if it reflects all the light beams directly back along their path.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
High-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses with peak power 1.5 * 10^3 MW is focused onto 1.0 mm2 of high-electron-density plasma. Find the pressure exerted on the plasma if the plasma reflects all the light beams directly back along their paths.
High-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation pulses
with peak power 1200 MW is focused onto 0.80 mm² of high-electron-density plasma. Find the pressure exerted on the plasma if the
plasma reflects all the light beams directly back along their paths.
Number
Units
High-power lasers are used to compress a plasma (a gas of charged particles) by radiation pressure. A laser generating radiation
pulses with peak power 1900 MW is focused onto 1.2 mm2 of high-electron-density plasma. Find the pressure exerted on the
plasma if the plasma reflects all the light beams directly back along their paths.
Number
i
1.2E5 *
Units
N/m^2 or Pa
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- A 75 mW laser produces a (polarized) beam of 595 nm light. This light reflects normally off an object that reflects 90 percent of the incident energy. How long does it take this laser to give the surface a momentum of 0.005 kgm/s If the rms electric field inside the beam is 1600 v/m, what is the radius of the beam?arrow_forwardA uniform beam of laser light has a circular cross section of diameter d = 7.5 mm. The beam’s power is P = 4.9 mW. (a) Calculate the intensity, I, of the beam in units of W / m2. (b) The laser beam is incident on a material that completely absorbs the radiation. How much energy, ΔU, in joules, is delivered to the material during a time interval of Δt = 0.89 s? (c) Use the intensity of the beam, I, to calculate the amplitude of the electric field, E0, in volts per meter. (d) Calculate the amplitude of the magnetic field, B0, in teslas.arrow_forwardThe light from a low-pressure sodium lamp with an irradiance of 200 W/m2 falls perpendicularly on a shallow vat of ethanol (n = 1.36) from air. Determine the irradiance on the bottom of the vat.arrow_forward
- An x-ray tube is operated at 48900 V. Calculate the minimum wavelength of the radiation emitted by this tube. If this radiation is directed at a crystal, the first-order maximum in the reflected radiation occurs when the angle of incidence is 2.93o. What is the spacing between reflecting planes in the crystal?arrow_forwardRadiation from a distant neutron star is found by a satellite far from Earth to have wavelength λ = 3 nm. a) What is the ratio δλ/λ, where δλ is the difference with respect to the measurement by a detector on the surface of the Earth? The Schwarzschild radius of the Earth is 8.7 mm, while its actual radius is 6.4 × 106 m. b) What is the ratio δ′ λ/λ, where δ′ λ is the difference with respect to the wavelength of the same radiation at the time of emission from the neutron star’s surface? Assume that the neutron star’s actual radius is three times its (typically 4 km) Schwarzschild radius.arrow_forwardLight with an intensity of 10−10W/m2 is shone perpendicular to the surface a metal that has one free electron per atom. Distance between atoms approx 2, 6A˚. Based on the notion of light as a wave and the assumption that light evenly distributed over the entire metal surface, (a) how much energy each electrons per second? (b) if the electron binding energy is 4.7eV , how long does the electron collect energy to escape the metal surface?arrow_forward
- The cylindrical beam of a 12.8-mW laser is 0.940 cm in diameter. What is the rms value of the electric field? answer in V/m*arrow_forwardRoughly what frequency and what kind of light would you need to be able to separate an electron from a proton? Of = 1018 H z, x ray f = 1014 H z, visible light Of = 102° H z, y ray O f = 10° H z, microwavearrow_forwardHow much energy does a photon of UV light (frequency = 3.6 x 1016 Hz) have? How fast do the light travel in a vacuum, water (n=1.33), and glass (n=1.50)?arrow_forward
- A cube of ice water (11 cm a side at -15 oC), is placed in a microwave with a beam having E0 = 27.47 kV/melectric field. The microwaves come from one side and will illuminate one side of the cube. The water absorbs theenergy at roughly 82% efficiency. How long will it take to raise the ice water's temperature to room temperature (20oC). Assume that the ice doesn’t exchange heat with the environment during this time.arrow_forwardA 15.0 mV helium-neon laser emits a uniform beam of circular cross section with a diameter of 2.0 mm. Find a) the maximum electric field in the beam. b) the total energy contained in a 1.00 meter length of the beam. c) the momentum carried by a 1.00 meter length of the beam?arrow_forwardA laser emits 5.73 × 1015 photons per second in a beam of light that has a diameter of 2.30 mm and a wavelength of 514.5 nm. Determine (a) the average electric field strength and (b) the average magnetic field strength for the electromagnetic wave that constitutes the beam. (a) Number M. (b) Number i Units Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning