In Fig. 33-64, a light ray in air is incident on a flat layer of material 2 that has an index of refraction n2 = 1.5. Beneath material 2 is material 3 with an index of refraction n3. The ray is incident on the air–material 2 interface at the Brewster angle for that interface. The ray of light refracted into material 3 happens to be incident on the material 2–material 3 interface at the Brewster angle for that interface. What is the value of n3?
Figure 33-64 Problem 70.
Want to see the full answer?
Check out a sample textbook solutionChapter 33 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Living By Chemistry: First Edition Textbook
Chemistry & Chemical Reactivity
Human Biology: Concepts and Current Issues (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Biology: Life on Earth (11th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- 106 In Fig. 33-78, where n, = 1.70, n2 = 1.50, and nz = 1.30, light re- %3D fracts from material 1 into material 2. If it is incident at point A at the critical angle for the interface be- tween materials 2 and 3, what are (a) the angle of refraction at point B and (b) the initial angle 0? If, in- stead, light is incident at B at the critical angle for the interface between materials 2 and 3, what are (c) the angle of refraction at point A and (d) the initial angle e? If, instead of all that, light is incident at point A at Brewster's angle for the interface between materials 2 and 3, what are (e) the angle of refraction at point B and (f) the initial angle 6? Figure 33-78 Problem 106.arrow_forward53 SSM www ILW In Fig. 33-53, a ray is incident on one face of a triangular glass prism in air. The angle of incidence e is chosen so that the emerging ray also makes the same angle e with the nor- mal to the other face. Show that the index of refraction n of the glass prism is given by sin ( + 6) sin o where o is the vertex angle of the prism and is the deviation angle, the total angle through which the beam is turned in passing through the prism. (Under these conditions the deviation angle u has the smallest possible value, which is called the angle of mini- mum deviation.) Figure 33-53 Problems 53 and 64.arrow_forward79 SSM (a) Prove that a ray of light incident on the surface of a sheet of plate glass of thickness t emerges from the opposite face parallel to its initial direction but displaced sideways, as in Fig. 33-69. (b) Show that, for small angles of incidence 0, this displacement is given by п - 1 x = te- п where n is the index of refraction of the glass and e is measured in radians. Figure 33-69 Problem 79.arrow_forward
- is 90°. 48 In Fig. 33-48a, a light ray in water is incident at angle on a boundary with an underlying material, into which some of the light refracts. There are two choices of underlying material. For each, the angle of refraction 02 versus the incident angle given in Fig. 33-48b. The vertical axis scale is set by 02 Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refraction of (c) material 1 and (d) material 2? Water (a) 0₂ 02s 0° 45° (b) Figure 33-48 Problem 48. 2 90° =arrow_forward(a) In the figure, light from ray A refracts from material 1 into a thin layer of material 2, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (i) What is the value of incident angle θA? Draw a sketch of the situation. (ii) If θA is decreased, does part of the light refract into material 3? (b) Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (iii) What is the value of incident angle θB? Draw a sketch of the situation. (iv) If θB is decreased, does part of the light refract into material 3? Answer: 54.3°, yes, 51.1°, noarrow_forwardFor problem 50(c), find the refracted angle in degrees if the index of refraction of material 3 is 2.00 and the angle of incidence is changed to 53.7 degrees!! (5 sig figs)arrow_forward
- 46 In Fig. 33-47a, a light ray in an underlying material is incident at angle on a boundary with water, and some of the light refracts into the water. There are two choices of underlying ma- terial. For each, the angle of refraction 02 versus the incident angle is given in Fig. 33-47b. The horizontal axis scale is set by 0₁s = 90°. Without calculation, determine whether the index of refraction of (a) material 1 and (b) material 2 is greater or less than the index of water (n = 1.33). What is the index of refrac- tion of (c) material 1 and (d) material 2? Water (a) 0₂ 90° 45° 0° 1 (b) Figure 33-47 Problem 46. -0₁ 01sarrow_forwardIn the figure, light from ray A refracts from material 1 (n₁ = 1.73) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.40). (a) What is the value of incident angle BA? (b) If 8A is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle Og? (d) If Og is decreased, does part of the light refract into material 3? OB I ng no 121arrow_forwardIn the figure, light from ray A refracts from material 1 (n1 = 1.60) into a thin layer of material 2 (n2 = 1.80), crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3 (n3 = 1.3). (a) What is the value of incident angle θA? (b) If θA is decreased, does part of the light refract into material 3? Light from ray B refracts from material 1 into the thin layer, crosses that layer, and is then incident at the critical angle on the interface between materials 2 and 3. (c) What is the value of incident angle θB? (d) If θB is decreased, does part of the light refract into material 3?arrow_forward
- In Figure (a), a beam of light in material 1 is incident on a boundary at an angle of 28° The extent to which the light is bent due to refraction depends, in part, on the index of refraction n2 of material 2. Figure (b) gives the angle of refraction 02 versus n2 for a range of possible n2 values, from n, = 1.36 to n, = 1.94. What is the speed of light in material 1? 38° 28 28 18 na (a) (b) Number i ! Units m/sarrow_forward*67 O In the ray diagram of Fig. 33-63, where the angles are not drawn to scale, the ray is incident at the critical angle on the inter- face between materials 2 and 3. Angle o = 60.0°, and two of the in- dexes of refraction are n = 1.70 and n2 = 1.60. Find (a) index of refraction n3 and (b) angle 0. (c) If øi decreased, does light refract into material 3? Figure 33-63 Problem 67.arrow_forwardThe angle of incidence of a light beam in air onto a reflecting surface is continuously variable. The reflected ray is found to be completely polarized when the angle of incidence is 63.0°. (a) What is the index of refraction of the reflecting material? (b) If some of the incident light (at an angle of 63.0°) passes into the material below the surface, what is the angle of refraction? answer in degrees °arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON