Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 22P
To determine
To find:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A black, totally absorbing piece of cardboard of area A= 2.0 cm2 intercepts light with an intensity of 10 W/m2 from a camera strobe light. What radiation pressure is produced on the cardboard by the light?
A solar sail 32.5 m2 in area and made of an absorptive material is orbiting the Sun in space. The Sun light normally incident on the solar sail exerts a radiation pressure of 3.22E-6 N/m2 on it. If the material is replaced with a reflective material that can complete reflect the Sun light, what will the radiation pressure become (in N/m2)?
A laser can suspend a small glass sphere in Earth's gravitational field, g = 9.80 m/s2. Assume that the suspended sphere is made of perfectly absorbing black glass. The sphere has a radius of 0.560 mm and a density of 0.190 g/cm3. Determine the radiation intensity needed to keep the small glass sphere suspended. (answer in kW / cm^2)
Chapter 33 Solutions
Fundamentals of Physics Extended
Ch. 33 - Prob. 1QCh. 33 - Prob. 2QCh. 33 - a Figure 33-27 shows light reaching a polarizing...Ch. 33 - Prob. 4QCh. 33 - In the arrangement of Fig. 33-l5a, start with...Ch. 33 - Prob. 6QCh. 33 - Figure 33-30 shows fays of monochromatic Light...Ch. 33 - Figure 33-31 shows the multiple reflections of a...Ch. 33 - Figure 33-32 shows four long horizontal layers AD...Ch. 33 - The leftmost block in Fig. 33-33 depicts total...
Ch. 33 - Prob. 11QCh. 33 - Prob. 12QCh. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - About how far apart must you hold your hands for...Ch. 33 - SSM What inductance must be connected to a 17 pF...Ch. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Sunlight just outside Earths atmosphere has an...Ch. 33 - Prob. 14PCh. 33 - An airplane flying at a distance of 10 km from a...Ch. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Radiation from the Sun reaching Earth just outside...Ch. 33 - ILW What is the radiation pressure 1.5 m away from...Ch. 33 - Prob. 22PCh. 33 - Someone plans to float a small, totally absorbing...Ch. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - The average intensity of the solar radiation that...Ch. 33 - SSM A small spaceship with a mass of only 1.5 103...Ch. 33 - A small laser emits light at power 5.00 mW and...Ch. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - At a beach the light is generally partially...Ch. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - A beam of polarized light is sent into a system of...Ch. 33 - Prob. 42PCh. 33 - A beam of partially polarized light can be...Ch. 33 - Prob. 44PCh. 33 - When the rectangular metal tank in Fig. 33-46 is...Ch. 33 - In Fig. 33-47a, a light ray in an underlying...Ch. 33 - Light in vacuum is incident on the surface of a...Ch. 33 - In Fig. 33-48a, a light ray in water is incident...Ch. 33 - Figure 33-49 shows light reflecting from two...Ch. 33 - In Fig. 33-50a, a beam of light in material 1 is...Ch. 33 - GO In Fig. 33-51, light is incident at angle 1 =...Ch. 33 - In Fig. 33-52a, a beam of light in material 1 is...Ch. 33 - SSM WWW ILW in Fig. 33-53, a ray is incident on...Ch. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Rainbows from square drops. Suppose that, on some...Ch. 33 - A point source of light is 80.0 cm below the...Ch. 33 - The index of refraction of benzene is 1.8. What is...Ch. 33 - SSM ILW In Fig. 33-57, a ray of light is...Ch. 33 - In Fig. 33-58, light from ray A refracts from...Ch. 33 - GO In Fig. 33-59, light initially in material 1...Ch. 33 - GO A catfish is 2.00 m below the surface of a...Ch. 33 - In Fig. 33-60, light enters a 90 triangular prism...Ch. 33 - Suppose the prism of Fig. 33-53 has apex angle =...Ch. 33 - GO Figure 33-61 depicts a simplistic optical...Ch. 33 - Prob. 66PCh. 33 - GO In the ray diagram of Fig. 33-63, where the...Ch. 33 - a At what angle of incidence will the light...Ch. 33 - Prob. 69PCh. 33 - In Fig. 33-64, a light ray in air is incident on a...Ch. 33 - Prob. 71PCh. 33 - An electromagnetic wave with frequency 4.00 1014...Ch. 33 - Prob. 73PCh. 33 - A particle in the solar system is under the...Ch. 33 - SSM In Fig, 33-65, a light ray enters a glass slab...Ch. 33 - Prob. 76PCh. 33 - Rainbow. Figure 33-67 shows a light ray entering...Ch. 33 - The primary rainbow described in Problem 77 is the...Ch. 33 - SSM emerges from the opposite face parallel to its...Ch. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - SSM A ray of white light traveling through fused...Ch. 33 - Three polarizing sheets are stacked. The first and...Ch. 33 - In a region of space where gravirational forces...Ch. 33 - An unpolarized beam of light is sent into a stack...Ch. 33 - SSM During a test, a NATO surveillance radar...Ch. 33 - The magnetic component of an electromagnetic wave...Ch. 33 - Calculate the a upper and b lower limit of the...Ch. 33 - In Fig. 33-71, two light rays pass from air...Ch. 33 - Prob. 91PCh. 33 - In about A D 150, Claudius Ptolemy gave the...Ch. 33 - Prob. 93PCh. 33 - Prob. 94PCh. 33 - Prob. 95PCh. 33 - Prob. 96PCh. 33 - Two polarizing sheets, one directly above the...Ch. 33 - Prob. 98PCh. 33 - Prob. 99PCh. 33 - Prob. 100PCh. 33 - Prob. 101PCh. 33 - Prob. 102PCh. 33 - Prob. 103PCh. 33 - Prob. 104PCh. 33 - Prob. 105PCh. 33 - In Fig. 33-78, where n1 = l.70, n2 = l .50, and n3...Ch. 33 - When red light in vacuum is incident at the...Ch. 33 - Prob. 108PCh. 33 - SSM a Show that Eqs. 33-1 land 33-2 satisfy the...Ch. 33 - Prob. 110P
Knowledge Booster
Similar questions
- Figure P24.13 shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 50.0 m and the electric field vibrates in the xy plane with an amplitude of 22.0 V/m. Calculate (a) the frequency of the wave and (b) the magnetic field B when the electric field has its maximum value in the negative y direction. (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and , and with its magnitude in the form B=Bmaxcos(kxt) Figure P24.13 Problems 13 and 64.arrow_forwardA uniform circular disk of mass m = 24.0 g and radius r = 40.0 cm hangs vertically from a fixed, frictionless, horizontal hinge at a point on its circumference as shown in Figure P34.39a. A beam of electromagnetic radiation with intensity 10.0 MW/m2 is incident on the disk, in a direction perpendicular to its surface. The disk is perfectly absorbing, and the resulting radiation pressure makes the disk rotate. Assuming the radiation is always perpendicular to the surface of the disk, find the angle through which the disk rotates from the vertical as it reaches its new equilibrium position shown in Figure 34.39b. Figure 34.39arrow_forwardWhat is the maximum radiation pressure exerted by sunlight in space (S = 1350 W/m2) on a flat black surface?arrow_forward
- the image question is belowarrow_forwardProblem 5: Electromagnetic radiation from a 5.05-mW laser is concentrated on a 1.05-mm2 area. Part (a) What is the intensity of the radiation falling on this surface, in watts per square meter? I = 4809 Part (b) Suppose the surface carries a 2.00-nC electric charge. What is the maximum magnitude of the electric force, in newtons, it experiences? FE,0 = Part (c) If the charge moves at 400 m/s, what is the maximum magnetic force, in newtons, that it feels? FB,0 =arrow_forwardLight with an average intensity of 1.7 x 106 W/m2 perpendicuarly hits a foil of mass 60 mg and an area 12 cm2. Assuming that the foil reflects the light completely, and that no other force is exerted on the foil, what is the speed of the foil after 15 seconds of exposure?arrow_forward
- As an unpolarized light goes through 3 filters, the 1st one is horizontally polarized, the 2nd one polarizes with an angle of 50 degrees from vertical, and the 3rd one is vertically polarized. What is the intensity of light through the 3 polarizers if the incident intesity is 9 W/m2?arrow_forwardA source of electromagnetic waves radiates power uniformly in all directions at a single frequency. At a distance of 5.50 km from the source, a detector measures the intensity of the wave to be 26.0 μμW/m2 .The detector is replaced with a perfectly absorbing sheet normal to the incident flux, with surface area 1.70 m2. What is the force on the sheet due to the wave?arrow_forwardProblem 5: Electromagnetic radiation from a 5.05-mW laser is concentrated on a 1.05-mm2 area. Part (a) What is the intensity of the radiation falling on this surface, in watts per square meter? I = 4809 ✔ Correct! Part (b) Suppose the surface carries a 2.00-nC electric charge. What is the maximum magnitude of the electric force, in newtons, it experiences? FE,0 = 3.805 * 10-6 Part (c) If the charge moves at 400 m/s, what is the maximum magnetic force, in newtons, that it feels? FB,0 = Please answer c, 4.68 * 10- 12 is incorrectarrow_forward
- Polarizing windows, filters, etc. are often used to reduce the amount of light that enters the lens of a camera or into a room or a car. A library atrium has an overhead skylight that lets in too much light during the day which heats up the interior of the library far too much. The building engineer installs new double paned polarizing sky lights to reduce the intensity. If sunlight, which is unpolarized, has an average intensity of 1286 W/m2 what angle should the polarizing axis of the second pane of the window make with the polarizing axis of the first pane of the window in order to reduce the intensity of the sunlight to 29% of the original value?°arrow_forwardAn electromagnetic (em-) wave in free space has an electric field described by E (r, t) = x (50 cos (w t- k z)]} V/m, with v = 10⁹ Hz. i) Find the average power passing through a circular area of diameter 5 m in the plane where z = 5m. Determine the average momentum density of this em-wave. Calculate the radiation pressure of this em-wave when it falls on a perfect conductor. € ii)arrow_forwardProblem 29: Unpolarized light of intensity I0 = 750 W/m2 is incident upon two polarizers. After passing through both polarizers the intensity is I2 = 120 W/m2.Randomized VariablesI0 = 750 W/m2I2 = 120 W/m2 Part (a) What is the intensity of the light after it passes through the first polarizer in W/m2?Numeric : A numeric value is expected and not an expression.I1 = __________________________________________arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning