A particle in the solar system is under the combined influence of the Sun’s gravitational attraction and the
Want to see the full answer?
Check out a sample textbook solutionChapter 33 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Biological Science (6th Edition)
Brock Biology of Microorganisms (15th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Microbiology: Principles and Explorations
Microbiology with Diseases by Body System (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Suppose a spherical particle of mass m and radius R in space absorbs light of intensity I for time t. (a) How much work does the radiation pressure do to accelerate the particle (mm rest In the given tine It absorbs the light? (b) How much energy canted by the electromagnetic waves is absorbed by the particle over this time based on the radiant energy incident on the particle?arrow_forwardA radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?arrow_forwardOptical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweezers is 1000 W/m², the same as the intensity of sunlight at the surface of the Earth. (a) What is the pressure on an atom if light from the tweezers is totally absorbed? Pa -27 -29 (b) If this pressure were exerted on a tritium atom, what would be its acceleration? (The mass of a tritium atom is 5.01 x 10- kg. Assume the cross-sectional area of the laser beam is 6.65 x 10- m/s² m².)arrow_forward
- The most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b) What is the wavelength?arrow_forwardIt has been proposed that spacecraft could be propelled by emitting intense beams of EM radiation from their tails rather than high-velocity chemical exhaust. This could reduce the fuel load required, which is very large for chemical rockets. Suppose a spacecraft (M = 250,000 kg) is floating in empty space at rest relative to a nearby space station. It then emits a very powerful 10.0 MW beam of laser light for one full day from its tail. Calculate the velocity acquired by the vehicle relative to the space station due to this emission of EM radiationarrow_forwardA helium–neon laser emits a beam of circular cross section with a radius r and a power P. (a) Find the maximum electric field in the beam. (b) What total energy is contained in a length ℓ of the beam? (c) Find the momentum carried by a length ℓ of the beam.arrow_forward
- Do it asaparrow_forwardJust after detonation, the fireball in a nuclear blast is approximately an ideal blackbody radiator with a surface temperature of about 1.0*107 K. (a) Find the wavelength at which the thermal radiation is maximum and (b) identify the type of electromagnetic wave corresponding to that wavelength. This radia-tion is almost immediately absorbed by the surrounding air molecules, which produces another ideal blackbody radiator with a surface temperature of about 1.0 * 105 K. (c) Find the wavelength at which the thermal radiation is maximum and (d) identify the type of electromagnetic wave corresponding to that wavelength.arrow_forwardA 1.00-m2 solar panel on a satellite that keeps the panel oriented perpendicular to radiation arriving from the Sun absorbs 1.40 kJ of energy every second. The satellite is located at 1.00 AU from the Sun. (The Earth-Sun distance is approximately 1.00 AU.) How long would it take an identical panel that is also oriented perpendicular to the incoming radiation to absorb the same amount of energy, if it were on an interplanetary exploration vehicle 2.05 AU from the Sun? answer in secondsarrow_forward
- A 1.00-m² solar panel on a satellite that keeps the panel oriented perpendicular to radiation arriving from the Sun absorbs 1.40 kJ of energy every second. The satellite is located at 1.00 AU from the Sun. (The Earth-Sun distance is approximately 1.00 AU.) How long would it take an identical panel that is also oriented perpendicular to the incoming radiation to absorb the same amount of energy, if it were on an interplanetary exploration vehicle 2.85 AU from the Sun? Sarrow_forwardThe most energetic electromagnetic waves in the universe are gamma-rays from gamma ray bursts (GRBs) from collapsing massive stars, observed by satellites with expected energies of 100 TeV (1 TeV = 1012eV). (a) (10) What is the frequency of these energetic gamma ray photons? 1 eV = 1.60 x 10-19 J. (b) What is the wavelength? 2. An astronaut on the International Space Station (ISS) is experimenting with a solid-state green laser communications system from on-orbit at 435 km altitude to the earth’s surface with a wavelength of 532nm and beam divergence (width) of 10-6 radians or 5.73 x 10-15° << 1°. The indices of refraction in free space and the atmosphere are n0 o 1.00000 ..., and na = 1.000293. Although density in the atmosphere varies continuously from the thinness of the upper atmosphere (near r ® 0) to higher density at the surface, refraction can be modeled as a ‘surface’ mid-atmosphere just like classic Snell’s Law calculations. (a) When the ISS is directly…arrow_forwardA collimated laser beam is linearly polarized in the y direction and propagates in a system containing two polarizers.(a) For angles of the transmission axes of the polarizers in relation to the y axis given by are θ1 = 70° and θ2 = 90°. If the incident beam irradiance is Io = 43 W/m², what is the IT irradiance of the beam transmitted by the system? (b) With respect to the ^y direction, the drive shaft of the first polarizer makes an angle θ and the drive shaft of the second polarizer makes an angle of 90°. If 10% of the incident optical power is transmitted by the system, what is the angle θ?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning