FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.44P
To determine
Heat transfer from the refrigerant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ammonia in a piston-cylinder assembly undergoes two processes in series. Initially, the ammonia
is saturated vapour at P₁=1000 kPa. Process 1-2 involves cooling until the piston meets the stops
where the position is locked in place at which time quality is x2=75%. The second process from
state 2 to state 3, involves heating (at constant volume) until x3=100%. If the mass is 0.45 kg
determine:
a) The work for process 1-2 (in kJ).
b) The heat transfer for process 1-2 (in kJ).
c) The work for process 2-3 (in kJ).
One kilogram of an ideal gas at 5.5 bar with an initial volume of 0.3 m3 expands to a final volume of 0.5 m3 in accordance with the equation pV1.3 = C. Find the work done and the heat transfer during the process. Take R = 0.287 kJ/kg-K and Cv = 0.713 kJ/kg-K.
Please show and explain your solution step by step thankyou
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need the answer quicklyarrow_forwardA piston-cylinder assembly contains 2 lb of water, initially at 100 Ibf/in.? and 400°F. The water undergoes two processes in series: a constant-pressure process followed by a constant volume process. At the end of the constant-volume process, the temperature is 300°F and the water is a two-phase liquid-vapor mixture with a quality of 50%. Neglect kinetic and potential energy effects. Determine the work and heat transfer for each process, all in Btu. Part A Determine the work for the constant-pressure process, in Btu. W12 = i Btu Save for Later Attempts: 0 of 4 used Submit Answerarrow_forwardA sample of ideal gas undergoes the process shown in the figure below.From A to B the process is adiabatic; from B to C it is isobaric with 345 kJof energy entering the system as heat; from C to D it is isothermal; and fromD to A is isobaric with 371 kJ of energy leaving the system by heat. Calculatea. The difference in internal energy in all processes, i.e., from A toB, from B to C, etc.b. The amount of heat in all the processes.c. The work done by the gas in all the processes.d. Comment on all the results.arrow_forward
- Solve the following problem: One kilogram of water contained in a piston–cylinder assembly, initially saturated vapor at 340 kPa, is condensed at constant pressure to saturated liquid. Consider an enlarged system consisting of the water and enough of the nearby surroundings that heat transfer occurs only at the ambient temperature of 25oC. Assume the state of the nearby surroundings does not change during the process, and ignore kinetic and potential energy effects. For the enlarged system, determine the heat transfer, in kJ, and the entropy production, in kJ/K.arrow_forwardA piston-cylinder assembly contains water, initially saturated liquid at 150^0C. The water is heated at constant temperature to saturated vapor. If the rate of heat transfer to the water is 2.28 kW, determine the rate at which work is done by the water on the piston, in kW. If in addition to the heat transfer rate given in part (a) the total mass of water is .1 kg, determine the time, in s, required to execute the process. My approach is to use Q-W = U + KE + PE ?arrow_forward3. A system containing 6 lbm of R-22, initially at P1 = 60 lbf/in? and V1 = 2.75 ft', is subjected to a constant-pressure process. Following the process, the volume of R-22 is doubled. Kinetic and potential energy can be neglected. Determine the work and heat transfer assocted with the process (Btu).arrow_forward
- One kg. of gas is confined to a constant volume tank. Initial pressure and volume are 4 0.21m3 respectively. When a heat energy of 82 kJ is supplied to the system, the final temperature of the gas becomes 127 degrees C. Find (a) Work done. (b) Change in internal energy. (c) Specific heat at constant volume. Assume, R=300 Nm/kgK.arrow_forwardSolve for amounf of mass in lb and heat transfer. Step by step solution please thank youarrow_forwardSaturated liquid water contained in a closed, rigid tank is cooled to a final state where the temperature is 500C and the masses of saturated vapor and liquid present are 0.06 and 900 kg, respectively. Determine the heat transfer for the process, in kJ.arrow_forward
- A quantity of air at a pressure of 105 kN/m² and temperature of 25 °C is compressed according to the law PV'1.33 = constant, from a volume of 0.6 m³ to volume of 0.12 m³. Then cooled at constant volume to the pressure of 250 kN/m². Calculate the work, heat transfer and the change of internal energy during these processes. Take, Cp= 1.006 kJ/kg K, R=0.287 kJ/kgarrow_forwardQ2. The majority of houses in İzmir is equipped with air-conditioners for keeping the inside temperature of houses at comfortable levels during hot summer days. Consider a hot summer day, the outdoor temperature is 42 °C, an air-conditioner runs to keep a room at 22 °C. The room is not well-insulated and therefore absorbs heat through its walls at a rate of 400 kJ/min. There are also electronic equipments in the room generating 600 W of heat. The cooling fluid inside the air-conditioner, DuPont Freon 12 enters into the compressor as a saturated vapor at 362 kPa and leaves it at 1000 kPa and 60 °C. The fluid flow rate through the compressor is 6000 L/h. а. What is the actual coefficient of performance of the air-conditioner? b. What is the minimum power input to the compressor for the same refrigeration process.arrow_forward#1. A closed, rigid tank fitted with a fine-wire electric resistor is filled with Refrigerant 22, initially at -14 °C, a quality of 70%, and a volume of 0.01 m³. A 12-volt battery provides a 5-amp current to the resistor for 5 minutes. If the final temperature of the refrigerant is 40 °C, determine the heat transfer, in kJ, from the refrigerant to the surrounding environment. Refrigerant 22 T = -14°C x1 = 70% T2 = 40°C V = 0.01 m³ Resistor 12-volt battery provides a 5-amp current for 5 minutes. l000000000000000arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License