FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.22P
To determine
Work for the process from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q5/ Determine the molar volume of butane at 510 K and 25 bar by each of the following :
a- Ideal gas law.
b- Compressibility factor.
Oxygen (O2) is contained within a horizontal piston-cylinder system initially
O2
at 500 kPa, 200°C, and occupies a volume of 0.04 m². The gas expands according to the
process described by pV!.15 = Constant, until the temperature reaches 97°C. Considering
oxygen as an ideal gas and taking the specific heat of oxygen as constant at an average
temperature between two states,
a) Determine the final pressure (in kPa) and volume (m³).
b) Determine the amount of work and heat transfer during the process, in kJ.
c) Find the entropy production in this process (in kJ/K) if the boundary temperature is taken as 350°C.
d) Write down the main sources of irreversibilities.
e) Draw the processes on P-v and T-s diagrams.
Determine the volume, in ft^3, of 2 lb of a two‐phase liquid–vapor mixture of Refrigerant 134A at 48°F with a quality of 50%. What is the pressure, in lbf/in^2?
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.)A 2-kg steam-water mixture at 1.0 MPaa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPaa and the temperature to 400 oC. 2.)There are 3 kg/min of steam undergoing an isothermal process from 30 bar and 350 oC to 7 bar. (note 1bar = 100 kPaa). PLS DRAW ONLY THE P-V AND THE T-S DIAGRAM OF THESE TWO PROBLEMS PLS.arrow_forward16. Determine the average c_ value in kJ/kg-K of a gas if 532kJ/kg of heat is necessary to raise the p temperature from 300K to 800K making the pressure constant.arrow_forwardDetermine the state of water if T= 12 C and P = 0.01402 bar Select one: a. Superheated Vapor b. Mixture c. Compressed liquidarrow_forward
- Give typed full explanationarrow_forwardLiquid-vapor mixture of ammonia, initially at x = 60% and a pressure of 1 MPa, is contained in a piston-cylinder. The mass of the ammonia is 2 kg. As the ammonia is heated, the volume remains constant until the ammonia becomes saturated vapor. Heat transfer to the ammonia continues at polytropic process with n=1 until the pressure is 1 MPa. For the overall process of the ammonia find 1. The work 2. The heat transfer 3. Plot P-v and T-v diagram m= 2 kgarrow_forward(25%) Q2. It includes wet vapor of R717 with a quality of 0.2 at a temperature of 15°C in a frictionless and well insulated piston-cylinder system shown in Fig. 2. Refrigerant is mixed with a propeller and initially occupies a volume of 5 L. When the pressure inside the cylinder reaches 800 kPa, the pin holding the cylinder will be broken and the propeller will stop, simultaneously. The piston moves upward after breaking the pin up to the point where equilibrium condition is obtained. Refrigerant is at saturated condition and a temperature of -15°C when the system reaches thermodynamic equilibrium. Calculate (a) the work done by the propeller, (b) The work done by the Fig. Q2 Piston- refrigerant after the pin is broken, and (c) the final volume of the refrigerant, (d) the entropy change of the refrigerant, (e) the entropy generation through this process. R717 cylinder systemarrow_forward
- Q3) A two-phase liquid-vapor mixture of water with an initial quality of 0.25 is contained in a piston cylinder device as shown in the figure below. The mass of the piston is 40 kg, and its diameter is 10 cm. The atmospheric pressure of the surroundings is 1 bar. The initial and final position of the piston are shown in the figure. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. Heat transfer to the water continues until its pressure is 3 bar. Friction between the piston and the cylinderwall is negligible. Determine the total amount of heat transfer, in J. (Gravitational acceleration g= 9.81 m/s2) a) Draw the process in the P-V plot. b) Calculate the heat transfered to the water until the piston hits the stops. c) Calculate the heat required to increase the pressure of the water to 3 bar.arrow_forward3. A gas initially 103.4 kPa and 0.0566 m3 undergoes a process to 620.36 kPa and 0.017 m3 during which the enthalpy increases by 16.35 KJ, Cv = 10.217 kJ/kg-oK. Determine the cp of gas. (3 DECIMALS IN FINAL ANSWER PLS)arrow_forwardAir in a rigid tank is at 200oC and 150 kPa. The air is cooled to a final equilibrium state of 60oC . i. Determine the change in pressure of the air, kPa. ii. Show and label the process on a temperature versus volume (P-v ) diagram. The gas constant for air, R is 0.287 kJ/kg.K and the universal gas constant, Ru is 8.314 kJ/kmol.K.arrow_forward
- سككينلممسسarrow_forwardOne-quarter Ibmol of oxygen gas (O2) undergoes a process from p1 = 20 lbf/in?, T1 = 500°R to p2 = 150 lbf/in?. For the process W = -500 Btu and Q = -152.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forwardWater contained in a closed, rigid tank, initially at 100 lb;/in?. 800°F, is cooled to a final state where the pressure is 20 Ib:/in?. Determine the quality at the final state and the change in specificentropy, in Btu/lb-°R, for the process. Step 1 Determine the quality at the final state. X2 = Hint Save for Later Attempts: 0 of 1 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY