FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.78P
a.
To determine
Work done in the isothermal process using an ideal gas model.
b.
To determine
Work done in the isothermal process using the steam table.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air is compressed in a piston-cylinder assembly from p₁ = 10 lb/in², T₁ = 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process
described by pv¹.30 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects.
Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu.
Step 1
Your answer is correct.
Determine the work, in Btu.
W12 = -52.4075
Hint
Step 2
* Your answer is incorrect.
Determine the heat transfer, in Btu.
Q12-13.4475
Btu
eTextbook and Media
Btu
Attempts: 1 of 4 used
Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is
stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu.
Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored.
Determine the mass of the carbon dioxide, in lb, and the work, in Btu.
Step 1
Determine the mass of the carbon dioxide, in lb.
m = i
Save for Later
lb
Attempts: 0 of 4 used Submit Answer
Step 2
The parts of this question must be completed in order. This part will be available when you complete the part above.
A 300-lb iron casting. initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be
modeled as incompressible with specific heats 0.10 Btu/lb - °R. and 0.45 Btu/lb - °R, respectively.
(a) For the iron casting and oil as the system.determine the final equilibrium temperature, in °F.
Ignore heat transfer between the system and its surroundings.
°F
(b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R.
Ignore heat transfer between the system and its surroundings.
Btu/°R
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ideal gas is confined to one side of a rigid, insulated container divided by a partition. The other side is initially 500 K, and V1 =0.2 m³. When the partition is removed, the gas expands to fill the entire container, which has a total volume of 0.5 m³. Assuming evacuated. The following data are known for the initial state of gas: P1 = 5 bar, T1 %3D that there is no change in the internal energy of the gas, determine the (a) pressure, in bar and the (b) product of mass, specific gas constant and T in the final state (in kPa-m³).arrow_forwardQ.5. Nitrogen at an initial state of 81°F and 1.3 atm is compressed slowly in an polytropic process to a final pressure of 5.7 atm. Determine the heat transfer and work done during this process, in Btu/lb, if (a) n 1.3 and k = 1.401 (b) n k. Evaluate specific heat ratio for the ideal gas (k) at Tinitial. (R 0.06855 Btu/Ib. °R and 0°F 459.67 °R) %3D %3Darrow_forwardAir is compressed in a piston-cylinder assembly from p₁ = 10 lb-/in², T₁= 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.30 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 Determine the work, in Btu. W12= Save for Later Btu Attempts: 0 of 4 used Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above. Submit Answerarrow_forward
- Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 30 lb-/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forwardPlease solve this in thermodynamicsarrow_forwardA 300-lb iron casting, initially at 600°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf= i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°Rarrow_forward
- Calculate the work for compressing 2 mol of an ideal gas from 1 bar to 10 bar at 25°C, given that the external pressure is 50 bar.A. 15.8 MJB. 12.9 MJC. 8.74 MJD. 2.45 MJarrow_forwardA 300-lb iron casting, initially at 1050°F, is quenched in a tank filled with 2121 lb of oil, initially at 80°F. The iron casting and oil can be modeled as incompressible with specific heats 0.10 Btu/lb · °R, and 0.45 Btu/lb · °R, respectively. (a) For the iron casting and oil as the system,determine the final equilibrium temperature, in °F. Ignore heat transfer between the system and its surroundings. Tf = i °F (b) For the iron casting and oil as the system,determine the amount of entropy produced within the tank, in Btu/°R. Ignore heat transfer between the system and its surroundings. O = i Btu/°R Touthoolk ond Mediearrow_forwardOne-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1= 150 kPa, T1 = 300 K to p2 = 500 kPa, T2 = 470 K. For the process, W = -300 kJ. Employing the ideal gas model, determine: (a) the heat transfer, in kJ. (b) the change in entropy, in kJ/K.arrow_forward
- Argon (molar mass 40 kg/kmol) compresses reversibly in an adiabatic system from 5 bar, 25 0C to a volume of 0.2 m3. If the initial volume occupied was 0.9 m3, calculate the gas constant in kJ/kg K to 4 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.3122 k J / k g K.arrow_forwardAn ideal gas is confined to one side of a rigid, insulated container divided by a partition. The other side is initially evacuated. The following data are known for the initial state of gas: P1 = 5 bar, T1 = 500 K, and V1 =0.2 m3. When the partition is removed, the gas expands to fill the entire container, which has a total volume of 0.5 m3. Assuming that there is no change in the internal energy of the gas, determine the (a) pressure, in bar and the (b) product of mass, specific gas constant and T in the final state (in kPa-?3)arrow_forwardArgon (molar mass 40 kg/kmol) compresses reversibly in an adiabatic system from 5 bar, 25 0C to a volume of 0.2 m3. If the initial volume occupied was 0.9 m3, calculate the work input in MJ to 3 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.3122 k J / k g K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license