FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.21P
To determine
The volume occupied by ammonia at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
show your complte solution
A tank is full of oxygen (M-32 g/mol) and open at the top.
There is a frictionless nozzle near the bottom, the diameter of
which is so small compared with the diameter of the tank that
the velocity at the free surface is zero. There is no friction and
nonflow work. Assuming ideal gas behavior for both of
oxygen and air (M-29 g/mol), what is the velocity of the
steady flow out of the nozzle?
the Berp
Tomall% Fashion
Point 1
h=30 ft
Point 2
A vertical piston-cylinder arrangement with a diameter of 120 mm contains water with a quality of 60%. The pressure is 3 bar. Initially the piston rests 40 mm above the bottom of the cylinder. Heat is then added until the volume is 3 times the original volume.
(a) Determine the mass of the water in the cylinder
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find:What is the volume occupied by the ammonia, in ft^3? Ignoring friction, determine the force required, in lbf, by mechanical attachments, such as stops, to hold the piston in place. Assume the force acts vertically downwards.arrow_forward3arrow_forwardAs shown in the figure below, a cylinder fitted with a piston is filled with 600 lb of saturated liquid ammonia at 45°F. The piston weighs 1 ton and has a diameter of 2.5 ft. * Your answer is incorrect. V= What is the volume occupied by the ammonia, in ft3? Ignoring friction, determine the force required, in lbf, by mechanical attachments, such as stops, to hold the piston in place. What is the volume occupied by the ammonia, in ft³? i 15376500 Patm = 1 atm Piston ft3 Ammonia Saturated liquid - Weight = 1 ton D=2.5 ftarrow_forward
- wer.. 2. Ammonia weighing 22 kgs is confirmed inside a cylinder equipped with a piston has an initial pressure of 413 KPa at 38C. If 2900 KJ of heat is added to the ammonia until its final pressure and temperature are 413 KPa and 100C, respectively, what is the amount of work done by the fluid in KJ?arrow_forwardUsing the tables for water, determine the specified property data at the indicated states. (a) At p = 3 bar, v = 0.3 m³ /kg, find T in °C and u in kJ/kg. T = U = (b) At T = 320°C, v = p = U = V = h = °C P = kJ/kg = 0.034 m³ /kg, find p in MPa and u in kJ/kg. (c) At p = 28 MPa, T = 400 °C, find v in m³ /kg and h in kJ/kg. m³/kg h = MPa kJ/kg (d) At T = 10°C, v = 100 m³ /kg, find p in kPa and h in kJ/kg. kJ/kg kPa kJ/kgarrow_forwardA quantity of ideal gas is contained by a moving piston within a leak tight cylinder with initial volume V₁=1lt at pressure P₁=7.19bars. The piston moves to a new position allowing the gas to expand at constant temperature to V₂=2lt. Ignore the pressure outside the piston and changes in the kinetic and potential energy. Calculate the work produced by the gas (Absolute value). Present your answer in kilo Joules (kJ).arrow_forward
- Why is the product of P(pressure) and V(specific volume) not zero when P approaches 0?arrow_forwardAt temperature t= 15°C and pressure 0.98 bar, the specific volume of gas = 0.45 m³/kg. Subsequently pressure drops to P2 =0.6 bar while the temperature remains constant. Make calculation for the density of gas under the change condition.arrow_forwardA typical gasoline (β=0.00095/°C) tank can hold 65 liters (~17 gallons). At the gas station, the storage tank is underground and is maintained at a temperature of 50.0°F. On a hot day at 103.0°F you fill your empty tank. (a) What is the equivalent temperature difference in °C? A typical gasoline (β=0.00095/°C) tank can hold 65 liters (~17 gallons). At the gas station, the storage tank is underground and is maintained at a temperature of 50.0°F. On a hot day at 103.0°F you fill your empty tank. (c) How much gas should you put in your car on this hot day at so that it will fill (not overfill) the tank when it expands to 103.0°F?arrow_forward
- For the cylinder below, the final volume inside cylinder (V3) in (Liter) ;is A frictionless piston-cylinder device initially contains 0.2 kg of steam at 400 kPa, 300 °C. Now the steam loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 135 °C. |frictionless Piston /// / Steam ,m=8-2 kg Pi= 400 kPa Ti= 300°C (sat. lig.)2 T3 = 135 C stops Below 0.1 O Between 0.1 and 0.2 O Between 0.2 and 0.3 Above 0.3 Oarrow_forwardAs shown in the figure below, a gas contained in a vertical piston-cylinder assembly. A vertical shaft whose cross-sectional area is 0.8 cm2 is attached to the top of the piston. Determine the magnitude, F, of the force acting on the shaft, in N, required if the gas pressure is 3 Bar. The masses of the piston and attached shaft are 24.5 kg and 0.5 kg, respectively. The piston diameter is 10 cm. The local atmospheric pressure is 1 bar. The piston moves smoothly in the cylinder and g = 9.81 m/s2.arrow_forwardA piston-cylinder arrangement contains water at 110°C, 85% quality with a volume of 1 L. What is the initial mass, in grams? The system is heated, causing the 150-mm-diameter piston to rise and encounter a linear spring with k = 800 kN/m. Calculate the specific internal energy (kJ/kg) at this instant knowing that the measured volume is 1.65 L. The heating continues and compresses the spring in the process. When the piston encounters the stops, the pressure is 200 kPa. What is the temperature (in °C) and entropy (in J/K) at this point? Heating continues until the pressure reached 300 kPa. What is the volume, in L at this instant? Illustrate the process in separate P-v and T-v diagram. Note:1000 L = 1m3. Hint: Draw the FBD of the piston in each state.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License