FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.16P
To determine
Mass of vapor at the initial state and mass of vapor at the final state. Show initial and final states on the temperature versus specific volume diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2) As shown, a piston-cylinder assembly
contains 5 g of air holding the piston
against the stops. The air, initially at 3
bar, 600 K, is slowly cooled until the
piston just begins to move downward in
the cylinder. The air behaves as an ideal
gas, g = 9.81 m/s², and friction is
negligible. Sketch the process of the air
on a p-V diagram labeled with the
temperature and pressure at the end
states. Also determine the heat transfer,
in kJ, between the air and its
surroundings.
Patm =1 bar
Stops
Piston
m= 50 kg
A = 9.75 × 10-3 m²
5 g of Air
T = 600 K
P = 3 bar
* Your answer is incorrect.
Water contained in a piston-cylinder assembly, initially at 300°F, a quality of 80%, and a volume of 6 ft3, is heated at constant
temperature to saturated vapor.
If the rate of heat transfer is 0.3 Btu/s, determine the time, in min, for this process of the water to occur.
Kinetic and potential energy effects are negligible.
At =
i 5.217
min
A spring-loaded piston-cylinder device contains of m=1kg carbon dioxide. Initially, the spring has no force on the piston and
P₁ = 500kPa, T₁ = 150K, V₁ = 0.1m³. Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the
state 2, T₁₂=900K, V₂=0.3m³. The gas is an ideal gas.
(11) Calculate the heat transferred into the system in
P1, V1, T1
P2, V2, T2
in kJ?
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- T6 please help me with the answer and full solutionarrow_forward2-kg saturated liquid Refrigerant-134a at 0. 40 MPa undergoes the following:Process 1-2: Evaporation at constant pressure until its temperature is 30 °C.Process 2-3: Cooled down at constant volume until it starts to condensate.a. Sketch the P-v and T-v diagram for the processes. Clearly show all states on the diagram. b. Estimate (no need for interpolation) the initial and final temperature of the refrigerant c. Determine the amount of heat transfer involved for each process and statewhether it is rejected or absorbed by the system. (Perform interpolation where necessary).arrow_forwardA spring-loaded piston-cylinder device contains of m=1 kg carbon dioxide. Initially, the spring has no force on the piston and P₁=500kPa, T = 150K, V₁ = 0.1m³. Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the state 2, T₁=900K, V₂=0.3m³. The gas is an ideal gas. 2 (4)What's the boundary work against piston W ?_____in kj? b-p P1, V1, T1 P2, V2, T2arrow_forward
- Liquid-vapor mixture of ammonia, initially at x = 60% and a pressure of 1 MPa, is contained in a piston-cylinder. The mass of the ammonia is 2 kg. As the ammonia is heated, the volume remains constant until the ammonia becomes saturated vapor. Heat transfer to the ammonia continues at polytropic process with n=1 until the pressure is 1 MPa. For the overall process of the ammonia find 1. The work 2. The heat transfer 3. Plot P-v and T-v diagram m= 2 kgarrow_forwardOxygen (O2) is contained within a horizontal piston-cylinder system initially at 500 kPa, 200°C, and occupies a volume of 0.04 m3 . The gas expands according to the process described by pV1.15 = Constant, until the temperature reaches 97°C. Considering oxygen as an ideal gas and taking the specific heat of oxygen as constant at an average temperature between two states, a) Determine the final pressure (in kPa) and volume (m3). b) Determine the amount of work and heat transfer during the process, in kJ. c) Find the entropy production in this process (in kJ/K) if the boundary temperature is taken as 350°C. d) Write down the main sources of irreversibilities. e) Draw the processes on P-v and T-s diagrams.arrow_forwardA rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment, occupying 1.0 ft, contains air at 50 lb/in?, 750°R, and the other, occupying 2.0 ft?, is evacuated. The valve is opened and the air is allowed to fill both volumes. Assume the air behaves as an ideal gas and that the final state is in equilibrium. Determine the final temperature of the air, in °R, and the amount of entropy produced, in Btu/°R.arrow_forward
- A closed, rigid tank is filled with only saturated vapor (water), initially at 20 bar, is cooled until the pressure is 3 bar.. Show the process of the water on a sketch of the T-v diagram and evaluate the heat transfer, in kJ/kg. c. Determine the specific internal energy at state 1 (u1 )in kJ/kg d. Determine the quality x at state 2 e. Determine the specific internal energy at state 2 (u2) in kJ/kgf. Determine the energy transfer by heat/mass during the process (kJ/kg)arrow_forwardParts ,g,h,i,jarrow_forwardA sealed vessel with a volume of 200 m³ is heated by a heat source. At the beginning of the process the vessel holds saturated water mixture at a pressure of 120 bar with a liquid fraction of 20%. The vessel is heated until a pressure of 130 bar. For this process: a. Draw the process on a T-V diagram b. Find the total mass of mixture in the vessel C. Find the quality of steam at the end of the process (when P=130 bar) inside the vesselarrow_forward
- Q3) A two-phase liquid-vapor mixture of water with an initial quality of 0.25 is contained in a piston cylinder device as shown in the figure below. The mass of the piston is 40 kg, and its diameter is 10 cm. The atmospheric pressure of the surroundings is 1 bar. The initial and final position of the piston are shown in the figure. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. Heat transfer to the water continues until its pressure is 3 bar. Friction between the piston and the cylinderwall is negligible. Determine the total amount of heat transfer, in J. (Gravitational acceleration g= 9.81 m/s2) a) Draw the process in the P-V plot. b) Calculate the heat transfered to the water until the piston hits the stops. c) Calculate the heat required to increase the pressure of the water to 3 bar.arrow_forwardAs shown, a piston-cylinder assembly contains 5 g of air holding the piston against the stops. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s2, and friction is negligible. Sketch the process of the air on a p–V diagram labeled with the temperature and pressure at the end states. Also determine the heat transfer, in kJ, between the air and its surroundings.arrow_forwardP2. A piston-cylinder device that initially has a volume of 0.03 m3 contains inside it saturated steam at 30 bar. The substance is cooled at constant volume until its temperature reaches 2000°C. The system is then expanded at constant temperature until the volume is twice the initial volume. Plot the thermodynamic processes on a phase diagram, determine the quality of thermodynamic state 2, and the approximate final pressure.Answer: 1.5538 MPa, 0.51918, 1.5 MPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license