FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.85P
a.
To determine
Work done on the air by the paddle wheel.
b.
To determine
Work done by the air to displace the piston.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Carbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 30 lb-/in², and a volume of 1.8 ft³. The gas is
stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu.
Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored.
Determine the mass of the carbon dioxide, in lb, and the work, in Btu.
A piston-cylinder assembly contains 0.6 lb of air initially at a pressure of 30 lb/in² and a
temperature of 100°F. The air is heated at constant pressure until its volume is doubled. Assume
the ideal gas model with constant specific heat ratio, k = 1.4.
Determine the work and heat transfer, in Btu.
One-tenth kmol of carbon monoxide (CO) in a piston- cylinder assembly undergoes a process from p1= 150 kPa, T1 = 300 K to p2 =
500 kPa, T2 = 470 K. For the process, W = -300 kJ.
Employing the ideal gas model, determine:
(a) the heat transfer, in kJ.
(b) the change in entropy, in kJ/K.
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air is compressed in a piston-cylinder assembly from p₁ = 25 lb/in², T₁ = 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.25 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 * Your answer is incorrect. Determine the work, in Btu. W12= i -658.845 Btuarrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forwardAir is compressed in a piston-cylinder assembly from p₁ = 10 lb-/in², T₁= 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.30 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 Determine the work, in Btu. W12= Save for Later Btu Attempts: 0 of 4 used Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above. Submit Answerarrow_forward
- 2 kg of water vapor in a piston-cylinder assembly expands at a constant pressure of 300 kPa (3.0 Bar) from a saturated vapor state to a volume of 2.064 m³. a. Determine the initial temperature, in °C b. Determine the final temperature, in °C C. Determine the work for the process, in kJ. Water p= constant = 3.0 bar V22.064 m³ m = 2 kg State 1-2: Isochoric Processarrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = i Save for Later lb Attempts: 0 of 4 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardA piston–cylinder assembly contains 0.9 kg of air at a temperature of 300 K and a pressure of 1 bar. The air is compressed to a state where the temperature is 470 K and the pressure is 6 bars. During the compression, there is a heat transfer from the air to the surroundings equal to 20 kJ. Using the ideal gas model for air, determine the work during the process, in kJ.arrow_forward
- Air is compressed in a piston-cylinder assembly from p₁ = 10 lb/in², T₁ = 500°R, V₁ = 9 ft³ to a final volume of V₂ = 1 ft³ in a process described by pv¹.30 = constant. Assume ideal gas behavior and neglect kinetic and potential energy effects. Using constant specific heats evaluated at T₁, determine the work and the heat transfer, in Btu. Step 1 Your answer is correct. Determine the work, in Btu. W12 = -52.4075 Hint Step 2 * Your answer is incorrect. Determine the heat transfer, in Btu. Q12-13.4475 Btu eTextbook and Media Btu Attempts: 1 of 4 usedarrow_forward2 kg of air contained in a piston-cylinder assembly undergoes a process from the initial state of T₁ = 400K, v₁ = 0.5 m³ to the final state of T₂ = 600K, v₂ = 0.8 m³. Assume the ideal gas model with cv = 0.72 kJ/kg . K for the air. Kinetic and potential energy effects are negligible. - Can this process occur adiabatically? Demonstrate it with formulas and calculations. If yes, determine the work, in kJ, for an adiabatic process between these states. If not, determine the direction of the heat transfer (in or out of the system). Determine the temperature of the isentropic process with the same initial state, T₁ = 400K, v₁ = 0.5 m³, and the same final specific volume: v₂ = 0.8 m³.arrow_forwardsimple solutionarrow_forward
- As shown in the figure below, a piston-cylinder assembly contains 10 g of air holding the piston against the stops, where the mass of the piston is 75 kg. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s², and friction is negligible. Patm = 1 bar Piston Stops A=9.75 x 103 m² T₁=600 K P₁ 3 bar Determine the heat transfer, in kJ, between the air and its surroundings. No gpt,only Handwrittenarrow_forwardA divider separates 1 lb mass of carbon monoxide (CO) from a thermal reservoir at 150o F. the carbon monoxide, initially at 60o F and 150 lbf/in2, expands isothermally to a final pressure of 10 lbf/in2 while receiving heat transfer through the divider from the reservoir. The carbon monoxide can be modeled as an ideal gas. (a) For the carbon monoxide as the system, evaluate the work and heat transfer, each in Btu and the amount of entropy produced, in Btu/oR. (b) Evaluate the entropy production, in Btu/oR, for an enlarged system that includesthe carbon monoxide and the divider, assuming the state of the divider remains unchanged. Compare with the entropy production of part (a) and comment on the difference.arrow_forwardAir within a piston–cylinder assembly, initially at 33 lbf/ in.2, 510°R, and a volume of 6 ft3, is compressed isentropically to a final volume of 3 ft3.Assuming the ideal gas model with k = 1.4 for the air, determine the:(a) mass, in lb.(b) final pressure, in lbf/in.2(c) final temperature, in °R.(d) work, in Btu.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license