FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.83P
To determine
Final temperature and heat transfer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Argon (molar mass 40 kg/kmol) compresses reversibly in an adiabatic system from 5 bar, 25 0C to a volume of 0.2 m3. If the initial volume occupied was 0.9 m3, calculate the gas constant in kJ/kg K to 4 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.3122 k J / k g K.
During a polytropic process, 10 lb of an ideal gas, whose R = 40 ft.lb/lb.R and cp = 0.25 Btu/lb.R, changes state from 20 psia and 40°F to 120 psia and 340°F. Determine (a)n, (b) U and H, (c) S, (d)Q, (e)∫ , (f)- ∫...... (g)If the process is steady flow during which K = 0, what is Ws?. What is K if Ws = 0? (h)What is the work for a nonflow process?
Oxygen (O2) is contained within a horizontal piston-cylinder system initially at 500 kPa, 200°C, and occupies a volume of 0.04 m3 . The gas expands according to the process described by pV1.15 = Constant, until the temperature reaches 97°C. Considering oxygen as an ideal gas and taking the specific heat of oxygen as constant at an average temperature between two states,
a) Determine the final pressure (in kPa) and volume (m3).
b) Determine the amount of work and heat transfer during the process, in kJ.
c) Find the entropy production in this process (in kJ/K) if the boundary temperature is taken as 350°C.
d) Write down the main sources of irreversibilities.
e) Draw the processes on P-v and T-s diagrams.
Chapter 3 Solutions
FUND OF ENG THERMODYN(LLF)+WILEYPLUS
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A mass of 3 kilograms of air in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 1.5 MPa, T1 = 264°C: Process 1–2: Constant-temperature expansion until the volume is twice the initial volume. Process 2–3: Constant-volume heating until the pressure is again 1.5 MPa.Assuming ideal gas behavior, determine the temperature at state 3, in kelvin.arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 30 lb-/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu.arrow_forwardArgon (molar mass 40 kg/kmol) compresses reversibly in an adiabatic system from 5 bar, 25 0C to a volume of 0.2 m3. If the initial volume occupied was 0.9 m3, calculate the final pressure in bar to 2 decimal places. Assume nitrogen to be a perfect gas and take cv = 0.3122 k J / k g K.arrow_forward
- Ammonia contained in a piston-cylinder assembly, initially saturated vapor at 0°F, undergoes an isothermal process during which its volume (a) doubles, (b) reduces by half. For each case, fix the final state by giving the quality or pressure, in lbf/in.², as appropriate. Locate the initial and final states on sketches of the p-v and T-v diagramsarrow_forwardWater vapor is cooled in a closed, rigid tank from T1 = 360°C and p1 = 100 bar to a final temperature of T2 = 320°C. Determine the final specific volume, v2, in m/kg, and the final pressure, p2, in bar. Step 1 Determine the final specific volume, vz, in m/kg. V2= i m/kg Save for Later Attempts: 0 of 3 used Submit Answer Using multiple attempts will impact your score. 10% score reduction after attempt 1 Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardWater, initially saturated vapor at 3 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C. For the water, determine the heat transfer, in kJ per kg of water. Kinetic and potential energy effects can be ignored. Q/m =_kJ/kgarrow_forward
- Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 400°C. For the water, determine the heat transfer, in kJ per kg of water.arrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 50 lb/in², and a volume of 1.6 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = 0.60792 Hint Your answer is correct. Step 2 * Your answer is incorrect. Determine the work, in Btu. W12= -53.4318 eTextbook and Media Hint lb Btu Attempts: 1 of 4 used Assistance Usedarrow_forward2) As shown, a piston-cylinder assembly contains 5 g of air holding the piston against the stops. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s², and friction is negligible. Sketch the process of the air on a p-V diagram labeled with the temperature and pressure at the end states. Also determine the heat transfer, in kJ, between the air and its surroundings. Patm =1 bar Stops Piston m= 50 kg A = 9.75 × 10-3 m² 5 g of Air T = 600 K P = 3 bararrow_forward
- Carbon dioxide (molar mass 44 kg/kmol) expands reversibly in a perfectly thermally insulated cylinder from 3.7 bar, 220 0C to a volume of 0.085 m3. If the initial volume occupied was 0.02 m3, calculate the adiabatic index to 1 decimal place. Assume nitrogen to be a perfect gas and take cv = 0.63 k J / k g Karrow_forwardCarbon dioxide (CO₂) fills a closed, rigid tank fitted with a paddle wheel, initially at 80°F, 20 lb/in², and a volume of 1.8 ft³. The gas is stirred until its temperature is 500°F. During this process heat transfer from the gas to its surroundings occurs in an amount 2.6 Btu. Assume ideal gas behavior, but do not assume constant specific heats. Kinetic and potential energy effects can be ignored. Determine the mass of the carbon dioxide, in lb, and the work, in Btu. Step 1 Determine the mass of the carbon dioxide, in lb. m = i Save for Later lb Attempts: 0 of 4 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardWater, initially saturated vapor at 5 bar, fills a closed, rigid container. The water is heated until its temperature is 440°C. For the water, determine the heat transfer, in kJ per kg of water. Kinetic and potential energy effects can be ignored.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license