
Interpretation:
From the given table, the polymer with the largest molar mass needs to be determined. Assuming the number of monomer units are same in all the
Concept introduction:
A polymer is a long chain consists of large number of monomer units. In a polymer, the monomers are linked to each other in a continuous or repetitive manner. These monomer units are linked to each other either through the formation of peptide linkage, glycosidic linkage or by removal of any moiety such as a water molecule. Polyvinyl chloride, Bakelite and polystyrene are some of the examples of polymers.
Mass percent of an atom present in the sample can be determined by dividing
For example, the mass percent of x g of an atom present in the y g of monomer unit can be determined as:

Answer to Problem 8QAP
Styrene is present with highest percentage by mass of carbon.
Explanation of Solution
If all the polymers contain the same number of monomer units, the molar mass of polymers can be compared by comparing the molar mass of the monomers in it.
(1)
In the table mentioned in the problem, the 1st polymer contains ethylene as a monomer unit. Ethylene consists of 2 carbon and 4 hydrogen atoms. The molar mass can be calculated as follows:
Putting the values,
The mass percentage of carbon can be calculated as follows:
Putting the values,
(2)
The 2nd polymer shown in table consists of propylene as a monomer unit. Propylene consists of 3 carbon and 6 hydrogen atoms.
The molar mass can be calculated as follows:
Putting the values,
The mass percentage of carbon can be calculated as follows:
Putting the values,
(3)
The 3rd polymer shown in table consists of vinyl chloride as monomer unit. Vinyl chloride consists of 2 carbon and 3 hydrogen and 1 chlorine atoms.
Putting the values,
The mass percentage of carbon can be calculated as follows:
Putting the values,
(4)
The 4th polymer shown in table consists of acrylonitrile as monomer unit. Acrylonitrile consists of 3 carbon, 3 hydrogen and 1 nitrogen atoms. The molar mass can be calculated as follows:
The mass percentage of carbon can be calculated as follows:
Putting the values,
(5)
The 5th polymer shown in table consists of styrene as monomer unit. Styrene consists of 8 carbon and 8 hydrogen atoms. The molar mass can be calculated as follows:
The mass percentage of carbon can be calculated as follows:
Putting the values,
(6)
The 6th polymer shown in table consists of methyl methacrylate as monomer unit. Methacrylate consists of 2 carbon and 2 oxygen atoms. The molar mass can be calculated as follow:
Putting the values,
The mass percentage of carbon can be calculated as follows:
Putting the values,
(7)
The 7th polymer shown in table consists of tetrafluoroethylene as monomer unit. Tetrafluoroethylene consists of 2 carbon and 4 fluorine atoms. The molar mass can be calculated as follows:
Putting the values,
The mass percentage of carbon can be calculated as follows:
Putting the values,
Here, styrene consists of highest percentage by mass of carbon that is around 96 %. Thus, styrene is present with highest percentage by mass of carbon.
Thus, styrene is present with highest percentage by mass of carbon.
Want to see more full solutions like this?
Chapter 23 Solutions
Chemistry: Principles and Reactions
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





