Concept explainers
Determine the number of rational and irrational zeroes of the polynomial function
- Rational zeros: 0 ; Irrational zeros: 1
- Rational zeros: 3 ; Irrational zeros: 0
- Rational zeros: 1 ; Irrational zeros: 2
- Rational zeros: 1 ; Irrational zeros: 0
Answer to Problem 81E
Option D
Explanation of Solution
Given:
Function:
Formula used:
Calculation:
To find zeros, put
Now, consider
The above polynomial is a second degree polynomial.
Discriminant
Here, the value of discriminant is less than zero.
So, zeros does not exists for above second degree polynomial.
Hence, zeros of given function is x = 1.
So, the number of rational zeros are 1 and number of irrational zeros are 0.
The values mentioned above matches with option D.
Conclusion:
Therefore, option D is correct.
Chapter 2 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning