For the rational function
Answer to Problem 1E
Slant asymptote
Explanation of Solution
Given:
Function:
For the rational function
Example:
Let
Here, the degree of numerator is exactly one more than the degree of denominator.
Calculation of asymptotes:
Vertical asymptotes:
To find vertical asymptotes, put denominator of the given function equal to zero.
Horizontal asymptotes:
As the degree of numerator is larger than the degree of the denominator, the horizontal asymptote does not exist for given function.
Slant asymptotes:
To find slant asymptote, divide given function numerator with denominator using long division.
Dividend:
Divisor:
Here, quotient is
So, the slant asymptote is
Chapter 2 Solutions
PRECALCULUS W/LIMITS:GRAPH.APPROACH(HS)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning