Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 44P
Figure 23-52 gives the magnitude of the electric field inside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by Es = 5.0 × 107 N/C. What is the charge on the sphere?
Figure 23-52 Problem 44.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Electric charge is distributed over the disk
a2 + y < 20 so that the charge density at (x,y) is o(x, y) = 5 + x² + y² coulombs per square meter.
Find the total charge on the disk.
Needs Complete solution with 100 % accuracy.
Charge Q is uniformly distributed in a sphere of radius R. (a) What fraction of the charge is contained within the radius r = R/2.00? (b) What is the ratio of the electric field magnitude at r =R/2.00 to that on the surface of the sphere?
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
17. The Na+ / glucose symport transports glucose from the lumen of the small intestine into cells lining the lu...
Biochemistry: Concepts and Connections (2nd Edition)
8.63 Two flasks of equal volume and at the same temperature contain different gases. One flask contains 10.0 g ...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
What are the names and functions of the arches of the foot?
Principles of Anatomy and Physiology
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following is a strong gre...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The electric field everywhere on the surface of a charged sphere of radius 0.273 m has a magnitude of 520 N/C and points radially outward from the center of the sphere. (a) What is the net charge on the sphere? nC (b) What can you conclude about the nature and distribution of charge inside the sphere?arrow_forwardIn Fig.89 the metallic wire has a uniform linear charge density λ = 4 x 10-⁹C/m, the rounding radius R=10cm is much smaller than the length of the wire. Find the magnitude of the electric field at point "0". 001|2 R Fig-89arrow_forward44 Figure 23-52 gives the magni- tude of the electric field inside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by E, = 5.0 x 107 N/C. What is the charge on the sphere? r (cm) Figure 23-52 Problem 44. E (10 N/C)arrow_forward
- A thin, square, conducting plate 46.0 cm on a side lles in the xy plane. A total charge of 4.10 x 108 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m² (b) Find the electric field just above the plate. magnitude N/C direction -Select-- (c) Find the electric field just below the plate. magnitude N/C direction Need Help? -Select-v Read It Master Harrow_forward1) A charge Q is uniformly distributed throughout a nonconducting sphere of radius R. (a) What is the magnitude of the electric field at a distance R/2 from the center of the sphere? (b) What is the magnitude of the electric field at a distance 2R from the center of the sphere?arrow_forwardElectric charge is distributed over the disk x2+y2 ≤4 so that the charge density at (x,y) is δ(x,y)=3x+3y+3x2 +3y2 (measured in coulombs per square meter). Find the total charge on the disk.arrow_forward
- 30 In Fig. 23-43, short sections of two very long parallel lines of charge are shown, fixed in place, Line 1 separated by L= 8.0 cm. The uni- form linear charge densities are +6.0 µC/m for line 1 and -2.0 µC/m for line 2. Where along the x axis shown is the net electric field from the two lines zero? Line 2 L/2 | L/2 Figure 23-43 Problem 30.arrow_forwardA planet has an electric field pointing toward its centre and having an average magnitude of about 1.2 × 10^2 N/C at its surface. (a) What is the sign of the charge on the planet? (b) What is the charge on the planet, assuming that all the charge is concentrated at the centre? This assumption is valid for a spherically symmetric object with a surface charge. The radius of the planet is 3.24 × 10^6 m.arrow_forwardFigure 22-53 Problem 30. *31 SSM ILW www In Fig. 22-54, a nonconducting rod of length L = 8.15 cm has a charge -q = -4.23 fC uniformly distributed along its length. (a) What is the linear charge density of the rod? What are the (b) magni- tude and (c) direction (relative to the positive direction of the x axis) of the electric field produced at point P, at distance a = 12.0 cm from the rod? What is the electric field magnitude produced at distance a =50 m by (d) the rod and (e) a particle of charge -q = -4.23 fC that we use to replace the rod? (At that distance, the rod "looks" like a particle.) -4 -x- Figure 22-54 Problem 31.arrow_forward
- A thin, square, conducting plate 54.0 cm on a side lies in the xy plane. A total charge of 3.20 x 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m² (b) Find the electric field just above the plate. magnitude N/C direction upward ◊ (c) Find the electric field just below the plate. magnitude N/C direction downward ↑arrow_forwardA ring shaped conductor with a radius 3.00 cm has a uniform charge density of -120.0 nC/m and it lies on a horizontal table top. Find the magnitude and direction of the electric field it produces at a point 4.50 cm directly above its center. (p = 8.85 x 10-12 c²/Nm2, k = 9.00 x 109 Nm²/C²) 3.07 x 105 N/C, vertically downward 3.07 x 105 N/C, vertically upward 5.33 x 105 N/C, vertically downward 1.00 x 105 N/C, vertically upward 5.79 x 104 N/C, vertically downward 5.79 x 104 N/C, vertically upward 5.33 x 105 N/C, vertically upward 1.00 x 105 N/C, vertically downwardarrow_forwardPlease Asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY