Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 61P
SSM A thin-walled metal spherical shell of radius a has a charge qa. Concentric with it is a thin-walled metal spherical shell of radius b > a and charge qb. Find the electric field at points a distance r from the common center, where (a) r < a, (b) a < r < b, and (c) r > b. (d) Discuss the criterion you would use to determine how the charges are distributed on the inner and outer surfaces of the shells.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin-walled metal spherical shell of radius a has a charge qa. Concentric with it is a thin-walled metal spherical shell of radius b >a and charge qb. Find the electric field at points a distance r from the common center, where (a) r< a, (b) a,< r,< b, and (c) r >b. (d) Discuss the criterion you would use to determine how the charges are distributed on the inner and outer surfaces of the shells.
Figure (a) shows a nonconducting rod with a
uniformly distributed charge +Q. The rod forms a
10/25 of circle with radius R and produces an electric
field of magnitude Earc at its center of curvature P. If
the arc is collapsed to a point at distance R from P
(see Figure (b)), by what factor is the magnitude of
the electric field at P multiplied?
(a)
+Q
Number
R
i
P
MI
Units
+Q
|—R—
P
This ans
A thin glass rod is bent into a semicircle of radius r. A charge +Q is uniformly distributed along the upper half, and a charge –Q is uniformly distributed along the lower half, as shown in the figure.
Find:1) The direction of the electric field at the center O of the semicircle as a function of Q and r. 2) The magnitude of the electric field at the center O of the semicircle as a function of Q and r.3) The force felt by a charge q0 = 2.0 x 10-7 C if this charge is placed at point O.
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Ingredient list of some common household products such as shampoo, lotion or cleanser must be examined and the ...
Living By Chemistry: First Edition Textbook
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The charge density of a non-uniformly charged sphere of radius 1.0 m is given as: For rs 1.0 m; p(r)= Po(1-4r/3) For r> 1.0 m; p(r)= 0, where r is in meters. What is the value of r in meters for which the electric field is maximum?arrow_forwardA non-conducting solid cylinder withvolumetric charge density a pa and radiusa , is surrounded by another non-conducting solid cylinder of the same length and radius aof the same length andof inner radius a and outer radius b withvolumetric charge density pb .Find the expression for the magnitudeof the electric field for: (a) Points inside the central cylinder. b) Points outside the central cylinder andinside the outer cylinder. c) Points outside both cylinders.arrow_forwards of the 15.13 The Coaxial Cable. A long coaxial cable con- sists of an inner cylindrical conductor with radius a and an outer coaxial cylinder with inner radius b and outer eld also radius c. The outer cylinder is mounted on insulating supports and has no net charge. The inner cylinder has a uniform positive charge per unit length A. Calculate the electric field a) at any point between the cylinders, a distance r from the axis; b) at any point outside the outer cylinder. c) Graph the magnitude of the electric field as a function of the distance r from the axis of the cable, from r=0 to r = 2c. d) Find the charge per unit length on the inner surface and on the outer surface of -ntained by the can you %3D the outer cylinder.arrow_forward
- R is removed from its middle region. Electric field at a distance 3R on axis of circular portion is V30 From an infinite non-conducting sheet having uniform surface charge density o a circular portion of radius V30 (d) 4 E0 (c) 2E0 (b) JBe. 3 E, (a) 2Eoarrow_forwardAn infinite cylinder of radius R has a charge density given by p(r) = ar³, where r is the perpendicular distance from the axis of the cylinder, and a is a constant. Show that the electric field for r< R has magnitude ar6 E(r) 7€0 Which direction does it point in?arrow_forwardConsider a cylindrical insulator of radius R and length L. This object has a surface charge density of σ(Φ) = a sin(5Φ) ( sigma(phi) = a sin(5(phi)) ) where a is a constant. If L >> R, determine the electric field inside and outside the cylinder.arrow_forward
- The charge density of a non-uniformly charged sphere of radius 1.0 m is given as: For rs 1.0 m; p(r)= 2po(1-8r/3) For r> 1.0 m; p(r)= 0, where r is in meters. What is the value of rin meters for which the electric field is maximum? 0.25 O 0.50 O 0.75 O 1.0 O 2.0 O Diğer:arrow_forwardFigure (a) shows a nonconducting rod with a uniformly distributed charge +Q. The rod forms a 10/23 of circle with radius R and produces an electric field of magnitude Earc at its center of curvature P. If the arc is collapsed to a point at distance R from P (see Figure (b)), by what factor is the magnitude of the electric field at P multiplied? +Q +Q R (a) (b) Number i ! Units This answer has no unitsarrow_forwardA rod of length L lies along the x-axis with its left end at the origin. The rod has a non-uniform charge density λ = ax, where a is a positive constant. P (a) Express the total charge Q on the rod in terms of a and L. (b) Calculate the electric field at point P, shown in the Figure. Take the limit d » L. What does the electric field look like in this limit? Is this what you expect? Explain. Hint: the following integral may be useful: x dx (x+a)² In(1+x)=x- a -+ln(x + a) X x + a +² 2 +... (for small .x)arrow_forward
- Charge is distributed throughout a spherical shell of inner radius r1 and outer radius r2 with a volume density given by ρ = ρ0 r1/r, where ρ0 is a constant. Determine the electric field due to this charge as a function of r, the distance from the center of the shell.arrow_forwardI need the answer as soon as possiblearrow_forwardA spherical rubber balloon carries a total charge Q distributed uniformly over its surface. At t = 0, the radius of the balloon is R. The balloon is then slowly inflated until its radius reaches 2R at the time t. Determine the electric field due to this charge as a function of time a) at the surface of the balloon, b) at distance R from the center of the balloon, and c) at distance 2R from the center of the balloon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY