Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 7P
A particle of charge 1.8 µC is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A charge of uniform volume density (80 nC/m3) fills a cube with 7 cm edges. What is the total electric flux through the top surface of this cube?
F
A point charge produces an electric flux of 273 N-m2/C through a Gaussian sphere of
radius 22.2 cm centered on the charge. What is the flux through a Gaussian sphere with a
radius 77.9 cm?
A hollow sphere has a uniform volume charge density of 1.63 nC/m3. The inner radius is a = 17.1 cm and the outer radius is b = 51.3 cm.
What is the magnitude of the electric field at 139 cm from the center of the sphere?
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Determine [OH], [H+], and the pH of each of the following solutions. a. 1.0 M KCl b. 1.0 M KC2H3O2
Chemistry
24. Two strings of different linear density are joined together and pulled taut. A sinusoidal wave on these str...
College Physics: A Strategic Approach (3rd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
3. Which of the following is a major functional characteristic of all organisms? (a) movement, (b) growth (c) m...
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 9.53 μC point charge is at the center of a cube with sides of length 0.665 m . What is the electric flux through one of the six faces of the cube?arrow_forwardA uniform surface charge of density 8.0 nC/m2 is distributed over the entire xy plane. What is the electric flux through a spherical Gaussian surface centered on the origin and having a radius of 5.0 cm?arrow_forwardA large insulating sheet has a surface charge density of σ = 52.1 nC/m² on it. What is the magnitude of the electric field a point d = 0.0456 mm from the sheet? Give your answer in units of N/C.arrow_forward
- A charge Q-7.14 nC is located at the center of a Gaussian sphere of radius R=10.0 cm. The sphere lies within a uniform upward electric field of magnitude E=2100 N/C. The net electric flux through the sphere is :arrow_forwardThe figure below shows a solid conducting sphere with radius R- 7.00 cm. Upon inspection, the electric feld at a distancer9.00 cm from the center of the conducting sphere is +250. kN/C. What is the surface charge density of the conducting sphere?( t8.854 K 10CN-m) +134 O Oarrow_forwardA uniform charge density of 500 nC/m3 is distributed throughout a spherical volume of radius 6.00 cm. Consider a cubical Gaussian surface with its center at the center of the sphere.What is the electric flux through this cubical surface if its edge length is (a) 4.00 cm and (b) 14.0 cm?arrow_forward
- Inside a spherical surface is a 10.6 x10-6C and a -4.4 x10-6 C charge. What is the total electric flux through the surface of the sphere in units of N m2/C?arrow_forwardAn infinite conducting cylindrical shell has radius 0.25 m and surface charge density 2.4 μC/m2. What is the magnitude of the electric field, in newtons per coulomb, 1.6 m from the axis of the cylinder?arrow_forwardA -2.87 µC charge is placed at the center of a conducting spherical shell, and a total charge of +8.70 µC is placed on the shell itself. Calculate the total charge on the outer surface of the conductor.arrow_forward
- Consider a very large, flat plate with surface charge density 3.46 nC/m2. Give the magnitude of the electric field (in N/C) a distance 7.54 m from the plate.arrow_forwardA point charge is located at the origin. Centered along the x axis is a cylindrical closed surface of radius 10 cm with one end surface located at x = 2 m and the other end surface located at x = 2.5 m. If the magnitude of the electric flux through the surface at x = 2 m is 4 N . m2 /C, what is the magnitude of the electric flux through the surface at x = 2.5 m? Select one: a. 1.8 N . m2 /C b. 2.56 N . m2 /C c. 1.0 N . m2 /C d. 4.0 N . m2 /C e. 5.0 N . m2 /Carrow_forwardAn unknown charge sits on a conducting solid sphere of radius 14 cm. If the electric field 24 cm from the center of the sphere has magnitude 2.4 × 103 N/C and is directed radially inward, what is the net charge on the sphere?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY