Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 54P
Figure 23-58 shows, in cross section, two solid spheres with uniformly distributed charge through out their volumes. Each has radius R. Point P lies on a line connecting the centers of the spheres, at radial distance R/2.00 from the center of sphere 1. If the net electric field at point P is zero, what is the ratio q2/q1 of the total charges?
Figure 23-58 Problem 54.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows two parallel nonconducting rings with their central axes along a common line. Ring 1 has uniform charge q₁ and
radius R; ring 2 has uniform charge 92 and the same radius R. The rings are separated by a distance 3.00R. The ratio of the electric field.
magnitudes of Ring 1 and Ring 2 at point P on the common line is 3.87. What is the ratio of charge magnitudes 91/92?
Ring 1
Ring 2
92
0 0
A positively charged particle is held at the center of a spherical shell. The figure gives the magnitude E of the electric field versus radial
distance r. The scale of the vertical axis is set by Es = 11.0 × 107 N/C. Approximately, what is the net charge on the shell?
Assume rs = 1 cm.
Number
i
E (107 N/C)
E
0
Units
r's
2rs
r (cm)
I
3rs
4rs
5rs
A uniformly charged disk with radius R = 45.0 cm and uniform charge density & = 6.70 x 10-³ C/m² lies in the xy-plane, with its center at the origin. What is the electric field (in MN/C) due to the charged disk at the following locations?
(a) z 5.00 cm
(b) z = 10.0 cm
(c) z = 50.0 cm
(d) z = 200 cm
MN/C
MN/C
MN/C
MN/C
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Alkaptonuria is an infrequent autosomal recessive condi-tion. It is first noticed in newborns when the urine in...
Genetic Analysis: An Integrated Approach (3rd Edition)
The most plausible hypothesis to explain why species richness is higher in tropical than in temperate regions i...
Campbell Biology (11th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Whether methyl salicylate follows HONC 1234 rule or not must be explained. Concept Introduction : HONC 1234 rul...
Living By Chemistry: First Edition Textbook
What global policy changes and what individual choices can help us sustain the planet that sustains us?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA solid conducting sphere, which has a charge Q, =28Q and radius ra = 2.2R is placed inside a very thin spherical shell of radius rp = 6.7R and charge Q2 =14Q as shown in the figure below. Q2 ra Find the magnitude of the electric field at r=3.3. Express your answer using one decimal point in units of k where k = 4περarrow_forwardThe electric field everywhere on the surface of a charged sphere of radius 0.273 m has a magnitude of 520 N/C and points radially outward from the center of the sphere. (a) What is the net charge on the sphere? nC (b) What can you conclude about the nature and distribution of charge inside the sphere?arrow_forward
- The figure shows two parallel nonconducting rings with their central axes along a common line. Ring 1 has uniform charge q1 and radius R; ring 2 has uniform charge 42 and the same radius R. The rings are separated by a distance 3.00R. The ratio of the electric field magnitudes of Ring 1 and Ring 2 at point P on the common line is 1.08. What is the ratio of charge magnitudes 91/92? Ring 1 Ring 2 92 O O -R- Number 0,29 Units No unitsarrow_forwardA long straight conducting cable (cylindrical in shape like a long straight wire) has a radius of a = 0.5 cm. At a perpendicular distance of r = 3 cm from the center of the cable, the electric field has a magnitude of 7 N/C, and is directed radially inward. How much charge per unit length (in C/m) exists on the cable?arrow_forward1. (a) The figure shows three circular arcs centered at the origin of a coordinate system. On each arc, the uniformly distributed charge is given in terms of Q = 3.28 µC. The radii are given in terms of R = 91.0 mm. What is the magnitude of the net electric field in N/C at the origin due to the arcs? 3R +9Q -1Q 2R +Q R (b) An electric field given by E = 7.80 i – 7.40(y² + 8.00) j pierces the Gaussian cube of edge length 58.0 cm and positioned as shown in the figure. (The magnitude E is in newtons per coulomb and the position x is in meters.) What is the net electric flux in Nm²/C through the cube? Gaussian surfacearrow_forward
- .54 Figure 23-58 shows, in cross section, two solid spheres with uni- formly distributed charge through- out their volumes. Each has radius R. Point P lies on a line connecting Figure 23-58 Problem 54. the centers of the spheres, at radial distance R/2.00 from the center of sphere 1. If the net electric field at point Pis zero, what is the ratio q/qı of the total charges?arrow_forwardCharge is distributed uniformly along a long straight wire. The electric field 5.00 cm from the wire is 20.0 N/C, directed radially outward towards the axis of symmetry. The linear charge density on the wire isarrow_forwardA positively charged particle is held at the center of a spherical shell. The figure gives the magnitude E of the electric field versus radial distance r. The scale of the vertical axis is set by E, = 8.0 × 107 N/C. Approximately, what is the net charge on the shell? Assume r, - 4 cm. E 2r 3r 4r 5r, r (cm) Units Numberarrow_forward
- In the figure, a solid insulating sphere of radius a = 2.00 cm is concentric with a spherical conducting shell of inner radius b = 2.00 a and of outer radius c = 2.40 a. The sphere has a net charge of q₁ = +5.00 fC uniformly distributed throughout its volume; the shell has a net charge q2 = -91. What is the magnitude and direction of the electric field at radial distances (a) r = 0.50 a and (b) r = 2.30 a? (c) What is the net charge on the inner and outer surface of the shell? (d) Include a diagram of the Gaussian surfaces used in your calculations. a C barrow_forward(a) What total (excess) charge q must the disk in the figure have for the electric field on the surface of the disk at its center to have the magnitude 3.0 × 106 N/C, the E value at which air breaks down electrically, producing sparks? Take the disk radius as 3.0 cm. (b) Suppose each surface atom has an effective cross-sectional area of 0.015 nm2. How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of these atoms must be so charged?arrow_forwardd L In Fig-1, there is a rod of length LA = 49 cm is lying on the x -axis whose one end is placed at the origin. It carries a uniform linear charge density AA = -21 µC/cm. The point P is located on the x-axis at a distance d = 10 cm from the origin as shown in the figure. a) Find the electric field in unit vector notation at point P due to the rod A. I component of the electric field Give your answer to at least three significance digits. N/C y component of the electric field Give your answer to at least three significance digits. N/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY