Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 11Q
Figure 23-28 shows a section of three long charged cylinders centered on the same axis. Central cylinder A has a uniform charge qA = +3q0. What uniform charges qB and qC should be on cylinders B and C so that (if possible) the net electric field is zero at (a) point 1, (b) point 2, and (c) point 3?
Figure 23-28 Question 11.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Figure 22-44 shows three circular arcs centered on the origin
of a coordinate system. On each arc, the uniformly distributed
charge is given in terms of Q=2.00 µC.The radii are given in
terms of R=10.0 cm.What are the (a) magnitude
and (b) direction (relative to the positive x direction) of the net
electric field at the origin due to the arcs?
3R
+9Q
-4Q
2R
+Q
R
A long straight conducting cable (cylindrical in shape like a long straight wire) has a radius of a = 0.5 cm. At a perpendicular distance of r = 3 cm
from the center of the cable, the electric field has a magnitude of 7 N/C, and is directed radially inward. How much charge per unit length (in C/m)
exists on the cable?
11 Figure 23-28 shows a section of three long charged cylinders
centered on the same axis. Central cylinder A has a uniform charge
9A = +390. What uniform charges qg and qc should be on cylinders
B and C so that (if possible) the net electric field is zero at (a) point
1, (b) point 2, and (c) point 3?
Figure 23-28 Question 11.
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Which climate control has the greatest influence on global temperatures? _______________________
Applications and Investigations in Earth Science (9th Edition)
Why is turbidity not an accurate measurement of viable bacteria in a culture?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
30. A horizontal spring with spring constant 85 N/m extends outward from a wall just above floor level. A 1.5 k...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
WHAT IF? Suppose a new fishery is discovered, and you are put in charge of developing it sustainably. What eco...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forward84 In Fig. 22-68, a uniform, upward electric field E of magnitude 2.00 x 10° N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have Figure 22-68 Problem 84. length L = 10.0 cm and separation d = 2.00 cm. An electron is then shot between the plates from the left edge of the lower plate. The initial velocity vo of the electron makes an angle e = 45.0° with the lower plate and has a magnitude of 6.00 x 10° m/s. (a) Will the electron strike one of the plates? (b) If so, which plate and how far horizon- tally from the left edge will the electron strike? 7. 1:0arrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.50 mm and length L = 12.90 m inside a thin-walled coaxial conducting cylindrical shell of radius R₂ = 11.0R₁ and the (same) length L. The net charge on the rod is Q₁ +3.68 x 10-12 C; that on the shell is Q₂ = -2.30Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.30R₂? What are (c) E and (d) the direction at r = 5.20R₁? What is the charge on the (e) interior and (f) exterior surface of the shell? (a) Number Unitsarrow_forward
- 87 In Fig. 22-69, particle 1 of charge q1 = 1.00 pC and particle 2 of charge q2 = -2.00 pC are fixed at a distance d = 5.00 cm apart. In unit-vector notation, what is the net electric field at points (a) A, (b) B, and (c) C? (d) Sketch the electric field lines. -d- 2. Figure 22-69 Problem 87.arrow_forward15 In Fig. 22-42, the three particles are fixed in place and have charges 91 = 42 = +e and q3 = +2e. Distance a = 6.00 µm. What are the (a) magnitude and (b) direc- tion of the net electric field at point P due to the particles? %3! %3Darrow_forwardd L In Fig-1, there is a rod of length LA = 49 cm is lying on the x -axis whose one end is placed at the origin. It carries a uniform linear charge density AA = -21 µC/cm. The point P is located on the x-axis at a distance d = 10 cm from the origin as shown in the figure. a) Find the electric field in unit vector notation at point P due to the rod A. I component of the electric field Give your answer to at least three significance digits. N/C y component of the electric field Give your answer to at least three significance digits. N/Carrow_forward
- 30 In Fig. 23-43, short sections of two very long parallel lines of charge are shown, fixed in place, Line 1 separated by L= 8.0 cm. The uni- form linear charge densities are +6.0 µC/m for line 1 and -2.0 µC/m for line 2. Where along the x axis shown is the net electric field from the two lines zero? Line 2 L/2 | L/2 Figure 23-43 Problem 30.arrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.20 mm and length L = 13.50 m inside a thin- walled coaxial conducting cylindrical shell of radius R₂ = 10.9R₁ and the (same) length L. The net charge on the rod is Q₁ = +3.56 × 10-¹2 C; that on the shell is Q2 = -2.05Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.20R2? What are (c) E and (d) the direction at r = 5.06R₁? What is the charge on the (e) interior and (f) exterior surface of the shell? R₂ Ri exarrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.30 mm and length L = 13.80 m inside a thin-walled coaxial conducting cylindrical shell of radius R₂ = 10.1R₁ and the (same) length L. The net charge on the rod is Q₁ = +3.42 × 10-¹2 C; that on the shell is Q₂ = -2.05Q₁. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.11R₂? What are (c) E and (d) the direction at r = 5.30R₁? What is the charge on the (e) interior and (f) exterior surface of the shell?arrow_forward
- b) C) = Figure shows a section of three long charged cylinders centered on the same axis. Central cylinder A has a uniform charge qA +3qo. What uniform charges qs and qc should be on cylinders B and C so that the net electric field is zero at point 2 (between B and C) and point 3 (outside C)? 9B = 390, 9B = 290, 9c=0 9c = 90 9B-390, 9c=0 98 90, 9c = 90 9B-290, 9c = 90 1 Carrow_forwardThe figure is a section of a conducting rod of radius R1 = 1.50 mm and length L = 14.40 m inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.5R1 and the (same) length L. The net charge on the rod is Q1 = +3.44 x 10-12 C; that on the shell is Q2 = -2.34Q1. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.05R2? What are (c) E and (d) the direction at r = 5.27R1? What is the charge on the (e) interior and (f) exterior surface of the shell? R (a) Number i Units (b) (c) Number i Units (d) (e) Number i Units (f) Number i Unitsarrow_forwardA line of charge lying along the x-axis starts at x=+x0 and extends to positive infinity. It has a nonuniform linear charge density λ=8λ0x0/x, where λ0 is a positive constant. The magnitude of the electric field at the origin O isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY