Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 53P
ILW The volume charge density of a solid nonconducting sphere of radius R = 5.60 cm varies with radial distance r as given by ρ = (14.1 pC/m3)r/R. (a) What is the sphere’s total charge? What is the field magnitude E at (b) r = 0, (c) r = R/2.00, and (d) r = R? (e) Graph E versus r.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A nonconducting spherical shell, with an inner radius of 4.0 cm and an outer radius of 6.0 cm, has charge spread nonuniformly through its volume between its inner and outer surfaces. The volume charge density r is the charge per unit volume, with the unit coulomb per cubic meter.For this shell r= b/r, where r is the distance in meters from the center of the shell and b = 3.0 mC/m2.What is the net charge in the shell?
Charge is distributed uniformly throughout the volume of an infinitely long solid cylinder of radius R.
a) Show that, at a distance r R.
R
Round to three significant figures
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. What would you be most likely to find ...
Cosmic Perspective Fundamentals
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
95. What is the minimum amount of necessary to produce 15.0 g of according to the reaction:
...
Introductory Chemistry (6th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Carbon dioxide gas enters a steady-state, steady-flow heater at 45Ibf/in2,60F and exits at 40Ibf/in2,1800F . Ch...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Density, density, density. (a) A charge -328e is uniformly distributed along a circular arc of radius 6.00 cm, which subtends an angle of 72°. What is the linear charge density along the arc? (b) A charge -328e is uniformly distributed over one face of a circular disk of radius 3.50 cm. What is the surface charge density over that face? (c) A charge -328e is uniformly distributed over the surface of a sphere of radius 2.00 cm. What is the surface charge density over that surface? (d) A charge -328e is uniformly spread through the volume of a sphere of radius 3.30 cm. What is the volume charge density in that sphere? (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forwardProblems 11-13 refer to the following situation. A nonuniform, but spherically symmetric, distribution of charge has a charge density p(r) given as follows: Problem 11: What is the constant po? Q πR³ a. Po and R are positive constants. The total charge of the distribution is Q. Problem 12: What is the E-field for r R? 1 Q b. 4περ 12 a. p(r) = {Po (7) . 20 πR³ 1 Qr² 4περ R4 1 QR 4περ 13 C. C. r R C. 30 πR³ 1 Qr³ 4περ R5 QR² 1 4περ 14 d. d. d. 4Q πR³ 1 Qr4 4πεο R6 QR³ 1 Απο 15arrow_forwardA cylinder of length L=5m has a radius R=2 cm and linear charge density 2=300 µC/m. Although the linear charge density is a constant through the cylinder, the charge density within the cylinder changes with r. Within the cylinder, the charge density of the cylinder varies with radius as a function p( r) =p.r/R. Here R is the radius of the cylinder and R=2 cm and p, is just a constant that you need to determine. b. Find the constant po in terms of R and 2. Then plug in values of R and 1. to find the value for the constant p. c. Assuming that L>>R, use Gauss's law to find out the electric field E inside the cylinder (rR) in terms of 1. and R. d. Based on your result from problem c, find the electric field E at r=1cm and r=4cm.arrow_forward
- Cylindrical shell of inner radius R₁ = 1.85 R and outer radius R₂ = 2.39 R is filled uniformly with charge density p. A point charge Q = 5.3q is located at point A a distance 7.97 R from the center of the cylinder. What is the magnitude of the force acts on the cylinder by the point charge. Express your answer in terms of qpR/e using two decimal places. Р R1 R₂ A Qarrow_forwardA nonconducting spherical shell, with an inner radius of 4.6 cm and an outer radius of 9.0 cm, has charge spread nonuniformly through its volume between its inner and outer surfaces. The volume charge density ρ is the charge per unit volume, with the unit coulomb per cubic meter. For this shell ρ = b/r, where r is the distance in meters from the center of the shell and b = 4.4 μC/m2. What is the net charge in the shell?arrow_forwardWhat is the linear charge density of a thin wire bent into a circle (or ring) of radius 6.48 cm if the total charge on the wire is 3.86 µC? Give your answer in μC/m.arrow_forward
- Figure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by E, = 3.0 x 10° N/C. What is the linear charge density of the shell? 12.6 -Es r (cm) (a) (b) Number i -5.8 Units nC/marrow_forward2R X= x, dx' 1. The uniformly charged cone with radius R and height h containing total charge Q is shown in the diagram. (a) Consider the disk (marked in blue) containing infinitesimal charge dq. State the radius of the disk as a function of x' ( plus other givens like R, h, etc). (b) What is the volume of the disk? (c) What is the volume charge density, p, of the disk ( and of the entire cone)? (d) What is the electric field at P due to the disk. Answer should be in terms of x', xo (plus other givens) (e) Sum up all the contributions from all such disks to find the total electric field at P due to the entire cone?arrow_forwardFigure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by E, = 3.3 × 10³ N/C. What is the linear charge density of the shell? (a) Number -E₂ r (cm) 6 Units 11.4 >arrow_forward
- Problem A nonconducting spherical shell of inner radius a=7.00cm and outer radius b=17.0cm is surrounded by a concentric conducting spherical shell of inner radius b and outer radius c=21.0cm, as shown in the figure. The nonconducting shell has a uniform volume charge density p-8.00uC/m3 and the conducting shell has no net charge. a) Find the total charge on the nonconducting spherical shell. QD nC b) Find the magnitude of electric field at a distance r=8.00cm E= kN/C c) Find the magnitude of electric field at a distance r=20.0cm E= N/C 9.arrow_forwardA solid insulating sphere has total charge Q and radius R.The sphere’s charge is distributed uniformly throughout its volume.Let r be the radial distance measured from the center of the sphere. IfE = 800 N/C at r = R/2, what is E at r = 2R?arrow_forwardA charged nonconducting rod, with a length L and a cross-sectional area A, lies along the positive side of an x axis with one end at the origin. The volume charge density p is charge per unit volume. Express your answer in terms of the given variables using e to represent the elementary charge. (a) How many excess electrons are on the rod if p is uniform? na = (b) How many excess electrons are on the rod if p is nonuniform, with a value given by p=bx^2, where b is a constant with the appropriate units? nb =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY