Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 57P
A thin-walled metal spherical shell has radius 25.0 cm and charge 2.00 × 10−7 C. Find E for a point (a) inside the shell, (b) just outside it, and (c) 3.00 m from the center.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin-walled metal spherical shell has radius 40.1 cm and charge 4.14 x 10 C. Find E for a point (a) inside the shell, (b) just outside it,
and (c) 8.66 m from the center.
(a) Number
i
Units
(b) Number
i
Units
(c) Number
Units
A thin-walled metal spherical shell has radius 25.0 cm and charge 2.00 * 10-7 C. Find E for a point (a) inside the shell, (b) just outside it, and (c) 3.00 m from the center.
Four solid plastic cylinders all have radius 2.65 am and length 5.52 cm. Find the charge of each cylinder given the following additional information about each one.
Cylinder (a) carries charge with uniform density 16.5 nC/m? everywhere on its surface.
Cylinder (b) carries charge with uniform density 16.5 nC/m? on its curved lateral surface only.
Cylinder (c) carries charge with uniform density 480 nC/m throughout the plastic.
Cylinder (d) carries charge with uniform linear density 61 nC/m along the length of the plastic.
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
33. Classify each statement as an observation, a law, or a theory.
a. All matter is made up of tiny, indestruc...
Chemistry: A Molecular Approach (4th Edition)
What was the total ground subsidence, and what was the total drop in the level of water in the well during the ...
Applications and Investigations in Earth Science (9th Edition)
24. Convert the following to SI units:
a. 8.0 in b. 66 ft/s
c. 60 mph d. 14 in2
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
11.57 Draw the cis and trans isomers for each of the following: (11.6)
a. 2-pentene
b. 3-hexene
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forward
- Consider an insulating sphere of radius 17 cm and a charge of 11.6548 C uniformly dis- tributed throughout the sphere. The sphere is surrounded by a conducting shell; the charge on its inner surface is q2 and on its outer surface 93. The total charge on the shell is 62.1352 μC. 43 008 62.1352 C Find 93. 17 cm Find 92. Answer in units of C. 11.6548 μC 92 Answer in units of C.arrow_forwardThree solid plastic cylinders all have radius 2.50 cm and length 6.00 cm. Find the charge of each cylinder given the following additional information about each one. Cylinder (a) carries charge with uniform density 15.0 nC/m² everywhere on its surface. Cylinder (b) carries charge with uniform density 15.0 nC/m2 on its curved lateral surface only. Cylinder (c) carries charge with uniform density 500 nC/m3 throughout the plastic.arrow_forward18. 6.0 m and total charge Q = 120 µC distributed uniformly along the length 8. Figure 5 shows a thin rod of length L of the rod. By direct integration, find the magnitude of the electric field at the point P in the figure. (s) Integral Figure 5 Call on X-axis no pat L/3 2 m 120ML. L L/2 3n aarrow_forward
- Four solid plastic cylinders all have radius 2.59 cm and length 6.54 cm. Find the charge of each cylinder given the following additional information about each one. Cylinder (a) carries charge with uniform density 16.3 nC/m² everywhere on its surface. C Cylinder (b) carries charge with uniform density 16.3 nC/m² on its curved lateral surface only. C Cylinder (c) carries charge with uniform density 535 nC/m3 throughout the plastic. Cylinder (d) carries charge with uniform linear density 53.8 nC/m along the length of the plastic.arrow_forwardAll parts Don't use chat gptarrow_forwardpls answer no 1, the needs in the solution are vector diagram, e calculation, ey and ex calculations, enet calculation and final answer. pls answer in paperarrow_forward
- helparrow_forwardThe figure is a section of a conducting rod of radius R₁ = 1.50 mm and length L = 12.10 m inside a thin-walled coaxial conducting cylindrical shell of radius R₂ = 11.8R₁ and the (same) length L. The net charge on the rod is Q₁ = +3.62 × 10-12 C; that on the shell is Q2 = -2.0501. What are the (a) magnitude E and (b) direction (radially inward or outward) of the electric field at radial distance r = 2.13R₂? What are (c) E and (d) the direction at r = 5.12R₁? What is the charge on the (e) interior and (f) exterior surface of the shell? R₂ R₁arrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. Concentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the charge distribution for the outer surface of the conducting spherical shell. O 4.130 m2 4 C 4.130x10 m2 -5 C 4.130x10 m2 -8 C 4.130x10 m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY