Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 32P
GO A long, nonconducting, solid cylinder of radius 4.0 cm has a nonuniform volume charge density ρ that is a function of radial distance r from the cylinder axis: ρ = Ar2. For A = 2.5 µC/m5, what is the magnitude of the electric field at (a) r = 3.0 cm and (b) r = 5.0 cm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A long, nonconducting, solid cylinder of radius 5.3 cm has a nonuniform volume charge density p that is a function of radial distance r
from the cylinder axis: p- Ar2. For A-3.5 uC/ms, what is the magnitude of the electric field at (a) r= 1.5 cm and (b) r- 11 cm.
(a) Number
Units
(b) Number
Units
eTextbook and Media
Hint
GO Tutorial
Save for Later
Attempts: unlimited
Submit Answer
A long, nonconducting, solid cylinder of radius 4.1 cm has a nonuniform volume charge density p that is a function of radial distance r
from the cylinder axis: p = Ar². For A = 2.3 µC/m5, what is the magnitude of the electric field at (a) r = 3.0 cm and (b) r = 6.5 cm.
Chapter 23, Problem 032
that is a function of radial distance r from the cylinder axis: ρ = AP. For
A long, nonconducting, solid cylinder of radius 4.5 cm has a nonuniform volume charge density
A 1.9 uC/m5, what is the magnitude of the electric field at (a)r 1.8 cm and (b)r- 6.3 cm
(a) Number
(b) Number
Units
Units
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What two factors determine how far from the shoreline waves will begin to break?
Applications and Investigations in Earth Science (9th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
1. In uniform circular motion, which of the following are constant: speed, velocity, angular velocity, centripe...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A long, nonconducting, solid cylinder of radius 3.0 cm has a nonuniform volume charge density p that is a function of radial distance r from the cylinder axis: p = k/r where k is a constant. If the electric field strength is 7.23 x 105 N/C at r= 1.5 cm, what is the value of k (uC/m2)? O 7.0 O 3.7 27 O 6.4 O 2.6 O 51.6 O 4.3 O 14.4 O 2.8 O 42arrow_forwardA long, nonconducting, solid cylinder of radius 4.1 cm has a nonuniform volume charge density p that is a function of radial distance r from the cylinder axis: p= Ar². For A = 3.4 µC/m³, what is the magnitude of the electric field at (a) r = 2.3 cm and (b) r = 8.9 cm. (a) Number i 1.1685819 (b) Number 9.063739132 Units Units N/C or V/m N/C or V/marrow_forwardA solid nonconducting sphere of radius R = 6.7 cm has a nonuniform charge distribution of volume charge density ρ = (16.7 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R? *I don't need answer a. * hint: Did you construct a Gaussian sphere through any given radial point, concentric with the actual sphere? What is the charge enclosed by the Gaussian sphere? (Do you see that with a variable density, integration is required?) Did you then apply Gauss' law to get the field?arrow_forward
- A solid nonconducting sphere of radius R = 6.7 cm has a nonuniform charge distribution of volume charge density ρ = (16.7 pC/m3)r/R, where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r = 0, (c) r = R/2.0, and (d) r = R?arrow_forwardA solid nonconducting sphere of radius R = 5.9 cm has a nonuniform charge distribution of volume charge density p= (15.3 pc/m³)r/R. where r is radial distance from the sphere's center. (a) What is the sphere's total charge? What is the magnitude E of the electric field at (b) r=0, (c) r-R/3.0, and (d) r-R? (a) Number (b) Number (c) Number (d) Number Units Units Units Units [[[[arrow_forwardFigure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by E; = 3.9 x 10° N/C. What is the linear charge density of the shell?arrow_forward
- Chapter 23, Problem 051 In the figure a nonconducting spherical shell of inner radius a = 2.32 cm and outer radius b = 2.62 cm has(within its thickness) a positive volume charge density ρ A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 45.7 fc is located at that center, what value should A have if the electric field in the shell (aarrow_forwardA long, nonconducting, solid cylinder of radius R=5.20 cm has a non-uniform volume charge density p that is a function of radial distance r from the cylinder axis: p=Ar. For A=1750 nC/m4, what is the magnitude of the electric field at r=3.00 cm?arrow_forwardThe unit is uN/Carrow_forwardA charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.60 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.2 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardIn the figure a nonconducting spherical shell of inner radius a- 2.23 cm and outer radius b-2.52 cm has (within its thickness) a positive volume charge density p-A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q- 48.4 fC is located at that center. What value should A have if the electric field in the shell (@srs b) is to be uniform?arrow_forwardFigure (a) shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are nonconducting and thin and have uniform surface charge densities on their outer surfaces. Figure (b) gives the radial component E of the electric field versus radial distance r from the common axis. The vertical axis scale is set by E, = 3.3 × 10³ N/C. What is the linear charge density of the shell? (a) Number -E₂ r (cm) 6 Units 11.4 >arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY