Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 36P
Figure 23-47 shows cross sections through two large, parallel, nonconducting sheets with identical distributions of positive charge with surface charge density σ = 1.77 × 10−22 C/m2. In unit-vector notation, what is
Figure 23-47 Problem 36.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
38 In Fig. 23-48a, an electron is shot directly away from a uni-
formly charged plastic sheet, at speed v, = 2.0 x 10° m/s. The sheet is
nonconducting, flat, and very large. Figure 23-48b gives the electron's
vertical velocity component v versus time t until the return to the
launch point. What is the sheet's surface charge density?
12
-e
t (ps)
(a)
(b)
v (10 m/s)
In the figure an electron (e) is to be released from rest on the central axis of a uniformlý charged disk of radius R. The surface charge
density on the disk is + 4.27 µC/m2. What is the magnitude of the electron's initial acceleration if it is released at a distance (a) R, (b) R/
139, and (c) R/ 1270 from the center of the disk?
(a) Number
Units
Units
(b) Number
Units
(c) Number
The figure shows a proton (p) on the central axis through a disk with a uniform charge density due to excess electrons. Three of those electrons are shown: ec at the disk center and electrons es at opposite sides of the disk, at radius R = 1.49 cm from the center. The proton is initially at distance z = R = 1.49 cm from the disk. At that location, what are the magnitudes of (a) the electric field E→c due to the electron ec and (b) the net electric field E→s,net due to electrons es? The proton is then moved to z = R/10.0. What then are the magnitudes of (c)E→c and (d) E→s,net? Note that the magnitude of E→c increases while the magnitude of E→s,net decreases.
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, using complete sentences and proper essay structure if needed. An asterisk (*) des...
Cosmic Perspective Fundamentals
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
13. Two 2.00 cm × 2.00 cm plates that form a parallel-plate capacitor are charged to ±0.708 nC. What are the el...
College Physics: A Strategic Approach (3rd Edition)
The sun shines on a 1500-ft2 road surface so that it is at 115 F. Below the 2-in. -thick asphalt, average condu...
Fundamentals Of Thermodynamics
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
20. The 20-cm-diameter disk in FIGURE EX12.20 can rotate on an axle through its center. What is the net torque ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- an electron (e) is to be released from rest on the central axis of a uniformly charged disk of radius R. The surface charge density on the disk is 4.00 mC/m2. What is the magnitude of the electron’s initial acceleration if it is released at a distance (a) R, (b) R/100, and (c) R/1000 from the center of the disk? (d) Why does the acceleration magnitude increase only slightly as the release point is moved closer to the disk?arrow_forwardIn the figure an electron (e) is to be released from rest on the central axis of a uniformly charged disk of radius R. The surface charge density on the disk is +4.04 µC/m². What is the magnitude of the electron's initial acceleration if it is released at a distance (a) R, (b) R/144, and (c) R/1020 from the center of the disk?arrow_forward5 In Fig. 23-25, an electron is released between two infinite nonconducting sheets that are horizontal and have uniform surface charge densities oay ando ,as indicated. The electron is subjected to the following three situations involving surface charge densities and sheet separations Rank the magnitudes of the electron's acceleration,greatest first. Situation O4) O(-) Separation +40 -40 2 +70 4d 3 +30 -5o 9darrow_forward
- In the figure an electron (e) is to be released from rest on the central axis of a uniformly charged disk of radius R. The surface charge density on the disk is +4.11 μC/m2. What is the magnitude of the electron's initial acceleration if it is released at a distance (a) R, (b) R/139, and (c) R/1280 from the center of the disk? I just need (b) and (c). I know a is 1.19E16.arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed v, - 2.40 x 10° m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume t, - 22.0 ps. -V (ps) (a) Number i Units C/m^2 v (10° m/s)arrow_forwardA -198.7 mC charge is placed at the center of a hollow conducting sphere. Find the Charge density (in C/m²) on the outside of the sphere if its radius is 6.47 cm and if it Contains zero net charge.arrow_forward
- Two infinite sheets plates with the same uniform charge density of 8.0 µC/m2 are vertically placed and parallel to each other. a distance d apart along the yz-plane. One plane passes through x = 3 cm while the other plate passes through x = -3 cm. The magnitude of the net electric field at the point (x = 5, y = 0, z = 0) is nearly Question 3 options: None of these 9.0 x 105 N/C 0 4.5 x 105 N/Carrow_forward(a) Figure (a) shows a nonconducting rod of length L = 9.00 cm and uniform linear charge density λ = +7.57 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 5.20 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 7.57 pC/m. With V = 0 at infinity, what is V at P? (a) Number i (b) Number i ·+· -L/2 (a) Units Units L/2 +‡ ‡ ‡+3= L/2 .Р (b) L/2arrow_forwardThe electric field in an xy plane produced by a positively charged particle is 8.29(5.9 i + 5.3 Ĵĵ) N/C at the point (4.2, 4.0) cm and 100 î N/C at the point (4.6, 0) cm. What are the (a) x and (b) y coordinates of the particle? (c) What is the charge of the particle? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forward
- (a) Figure (a) shows a nonconducting rod of length L = 5.40 cm and uniform linear charge density λ = +4.41 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 9.30 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 4.41 pC/m. With V= 0 at infinity, what is V at P? (a) Number i (b) Number i P ‡ ‡ ‡ ‡ + + + +‡‡ ‡ ‡‡ L/2 L/2 Units Units [+ + + ++++G ·L/2 L/2-arrow_forward(a) Figure (a) shows a nonconducting rod of length L = 8.00 cm and uniform linear charge density λ = +1.21 pc/m. Take V = 0 at infinity. What is V at point P at distance d = 7.40 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 1.21 pc/m. With V = 0 at infinity, what is V at P? 1/2 L/2- L/2 1/2 - (a) (b)arrow_forwardAn infinite sheet of charge is located in the y-z plane at x = 0 and has uniform charge denisity o1 = 0.62 µC/m2. Another infinite sheet of charge with uniform charge density o7 = -0.29 µC/m? is located at x = c = 33 cm.. An uncharged infinite conducting slab is placed halfway in between these sheets ( i.e., between x = 14.5 cm and x 3 18.5 сm). a/2 a/2| a/2 1) What is Ex(P), the x-component of the electric field at point P, located at (x,y) = (7.25 cm, 0)? N/C Submit 2) What is oa, the charge density on the surface of the conducting slab at x = 14.5 cm? µC/m? Submit 3) What is V(R) - V(P), the potentital difference between point P and point R, located at (x,y) = (7.25 cm, -18.5 cm)? Submit 4) What is V(S) - V(P), the potentital difference between point P and point S, located at (x,y) = (25.75 cm, -18.5 cm)? Submit + 5) What is Ex(T), the x-component of the electric field at point T, located at (x,y) (40.25 сm, -18.5 ст)? N/C Submitarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY