Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 58P
A uniform surface charge of density 8.0 nC/m2 is distributed over the entire xy plane. What is the electric flux through a spherical Gaussian surface centered on the origin and having a radius of 5.0 cm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform surface charge of density 8.0 nC/m2 is distributed over the entire xy plane. What is the electric flux through a spherical Gaussian surface centered on the origin and having a radius of 5.0 cm?
A charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long
conducting cylindrical shell (inner radius = 5.80 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the
magnitude of the electric field at distance r = 15.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and
(c) outer surface of the shell?
Gaussian
cylinder
Shell
Rod
(a)
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
A charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.60 cm, outer radius = 9.40 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?
Chapter 23 Solutions
Fundamentals of Physics Extended
Ch. 23 - A surface has the area vector A = 2 i 3 j m2....Ch. 23 - Figure 23-22 shows, in cross section, three solid...Ch. 23 - Figure 23-23 shows, in cross section, a central...Ch. 23 - Figure 23-24 shows, in cross section, two Gaussian...Ch. 23 - In Fig. 23-25, an election is released between two...Ch. 23 - Three infinite nonconducting sheets, with uniform...Ch. 23 - Figure 23-26 shows four situations in which four...Ch. 23 - Figure 23-27 shows four solid spheres, each with...Ch. 23 - A small charged ball lies within the hollow of a...Ch. 23 - Rank the situations of Question 9 according to the...
Ch. 23 - Figure 23-28 shows a section of three long charged...Ch. 23 - Figure 23-29 shows four Gaussian surfaces...Ch. 23 - SSM The square surface shown in Fig. 23-30...Ch. 23 - An electric field given by E = 4.0 i 3.0y2 2.0 j...Ch. 23 - The cube in Fig. 23-31 has edge length 1.40 m and...Ch. 23 - In Fig. 23-32, a butterfly net is in a uniform...Ch. 23 - In Fig. 23-33, a proton is a distance d/2 directly...Ch. 23 - At each point on the surface of the cube shown in...Ch. 23 - A particle of charge 1.8 C is at the center of a...Ch. 23 - When a shower is turned on in a dosed bathroom,...Ch. 23 - ILW Fig. 23-31 shows a Gaussian surface in the...Ch. 23 - Figure 23-34 shows a closed Gaussian surface in...Ch. 23 - GO Figure 23-35 shows a dosed Gaussian surface in...Ch. 23 - Figure 23-36 shows two non-conducting spherical...Ch. 23 - SSM The electric field in a certain region of...Ch. 23 - GO Flux and nonconducting shells. A charged...Ch. 23 - A particle of charge q is placed at one corner of...Ch. 23 - GO The box-like Gaussian surface shown in Fig....Ch. 23 - SSM A uniformly charged conducting sphere of 1.2 m...Ch. 23 - The electric field just above the surface of the...Ch. 23 - Space vehicles traveling through Earths radiation...Ch. 23 - GO Flux and conducting shells. A charged particle...Ch. 23 - An isolated conductor has net charge 10 106 C and...Ch. 23 - An electron is released 9.0 cm from a very long...Ch. 23 - a The drum of a photocopying machine has a length...Ch. 23 - Figure 23-40 shows a section of a long,...Ch. 23 - SSM An infinite line of charge produces a field of...Ch. 23 - Figure 23-41a shows a narrow charged solid...Ch. 23 - GO A long, straight wire has fixed negative charge...Ch. 23 - GO A charge of uniform linear density 2.0 nC/m is...Ch. 23 - SSM WWW Figure 23-42 is a section of a conducting...Ch. 23 - In Fig. 23-43, short sections of two very long...Ch. 23 - ILW Two long, charged, thin-walled, concentric...Ch. 23 - GO A long, nonconducting, solid cylinder of radius...Ch. 23 - In Fig. 23-44, two large, thin metal plates are...Ch. 23 - In Fig. 23-45, a small circular hole of radius R =...Ch. 23 - GO Figure 23-46a shows three plastic sheets that...Ch. 23 - Figure 23-47 shows cross sections through two...Ch. 23 - SSM WWW A square metal plate of edge length 8.0 cm...Ch. 23 - GO In Fig. 23-48a, an electron is shot directly...Ch. 23 - SSM In Fig. 23-49, a small, nonconducting ball of...Ch. 23 - Figure 23-50 shows a very large nonconducting...Ch. 23 - GO An electron is shot directly toward the center...Ch. 23 - Two large metal plates of area 1.0 m2 face each...Ch. 23 - GO Figure 23-51 shows a cross section through a...Ch. 23 - Figure 23-52 gives the magnitude of the electric...Ch. 23 - Two charged concentric spherical shells have radii...Ch. 23 - Assume that a ball of charged particles has a...Ch. 23 - SSM An unknown charge sits on a conducting solid...Ch. 23 - GO A charged particle is held at the center of a...Ch. 23 - In Fig, 23-54, a solid sphere of radius a = 2.00...Ch. 23 - GO Figure 23-55 shows two nonconducting spherical...Ch. 23 - SSM WWW In Fig. 23-56, a nonconducting spherical...Ch. 23 - GO Figure 23-57 shows a spherical shell with...Ch. 23 - ILW The volume charge density of a solid...Ch. 23 - Figure 23-58 shows, in cross section, two solid...Ch. 23 - A charge distribution that is spherically...Ch. 23 - The electric field in a particular space is E = x ...Ch. 23 - A thin-walled metal spherical shell has radius...Ch. 23 - A uniform surface charge of density 8.0 nC/m2 is...Ch. 23 - Charge of uniform volume density = 1.2 nC/m3...Ch. 23 - The chocolate crumb mystery. Explosions ignited by...Ch. 23 - SSM A thin-walled metal spherical shell of radius...Ch. 23 - A particle of charge q = 1.0 107 C is at the...Ch. 23 - A proton at speed v = 3.00 105 m/s orbits at...Ch. 23 - Equation 23-11 E = /0 gives the electric field at...Ch. 23 - Charge Q is uniformly distributed in a sphere of...Ch. 23 - A charged particle causes an electric flux of 750...Ch. 23 - SSM The electric field at point P just outside the...Ch. 23 - The net electric flux through each face of a die...Ch. 23 - Figure 23-59 shows, in cross section, three...Ch. 23 - Charge of uniform volume density = 3.2 C/m3 fills...Ch. 23 - A Gaussian surface in the form of a hemisphere of...Ch. 23 - What net charge is enclosed by the Gaussian cube...Ch. 23 - A nonconducting solid sphere has a uniform volume...Ch. 23 - A uniform charge density of 500 nC/m3 is...Ch. 23 - Figure 23-61 shows a Geiger counter, a device used...Ch. 23 - Charge is distributed uniformly throughout the...Ch. 23 - SSM A spherical conducting shell has a charge of...Ch. 23 - A charge of 6.00 pC is spread uniformly throughout...Ch. 23 - Water in an irrigation ditch of width w = 3.22 m...Ch. 23 - Charge of uniform surface density 8.00 nC/m2 is...Ch. 23 - A spherical ball at charged particles has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
57. Which buffer system is the best choice to create a buffer with pH = 7.20? For the best system, calculate th...
Chemistry: A Molecular Approach (4th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
The way to predict if products are favored in a reversible reaction needs to be explained. Concept introduction...
Living By Chemistry: First Edition Textbook
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
26. Which type of muscular tissue has the highest capacity for regeneration?
Principles of Anatomy and Physiology
An absolute pressure gauge attached to a steel cylinder shows 135kPa . We want to attach a manometer using liqu...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charge of uniform linear density 2.40 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.60 cm, outer radius = 9.20 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder Shell Rod- (a)arrow_forwardA charge of uniform linear density 2.80 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.20 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.8 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Please Helparrow_forwardA charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.20 cm, outer radius = 9.80 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 14.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forward
- A charge of uniform linear density 2.00 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.60 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.2 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardA charge of uniform linear density 2.60 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.00 cm, outer radius = 10.6 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.6 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Gaussian cylinder- (a) (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardA charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.40 cm, outer radius 10.0 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 15.4 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell? Stell-arrow_forward
- A nonconducting spherical shell has an inner radius A, an outer radius B, and a nonuniform charge 6a density given by p = p3 +e-pr where a and B are constants. The inner spherical shell is surrounded with a concentric nonconducting spherical shell that has an inner radius B, outer radius C, and a uniform charge density such that the electric field for r> C is zero. 1. What is the total charge contained in the inner spherical shell? 2. What is the charge density in the outer spherical shell? 3. What is the magnitude of the electric field for A < r < B? 4. What is the magnitude of the electric field for Barrow_forwardA point charge - 2.13 pC is placed at the center of a spherical conducting shell of inner radius R1 = 3.50 cm and outer radius R2 = 4.00 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude 8.51 N/C. What is the charge on the inner surface of the conductor in pC? Enter the value without the units and with two (2) decimal places. Hint: Make sure you first draw a picture. You are given the direction and value of the electric field at r = R2. 1 pC = 1x10-12 C.arrow_forwardA spherical, non-conducting shell of inner radius = 10 cm (r1) and outer radius = 15 cm (r2) carries a total charge Q = 15 ?C distributed uniformly throughout the volume of the shell. What is the magnitude of the electric field at a distance r = 12 cm from the center of the shell?arrow_forwardA charge distribution that is spherically symmetric but not uniform radially produces an electric field of magnitude E = Kr4, directed radially outward from the center of the sphere. Here r is the radial distance from that center, and K is a constant.What is the volume density r of the charge distribution?arrow_forwardA charge of uniform linear density 2.0 nC/m is distributed along a long, thin, nonconducting rod.The rod is coaxial with a long conducting cylindrical shell (inner radius = 5.0 cm, outer radius = 10 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field 15 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?arrow_forwardIn the figure a sphere, of radius a = 14.2 cm and charge q = 1.00×10-5 C uniformly distributed throughout its volume, is concentric with a spherical conducting shell of inner radius b = 48.3 cm and outer radius c = 50.3 cm . This shell has a net charge of -q. a) Find expressions for the electric field, as a function of the radius r, within the sphere and the shell (r < a). Evaluate for r = 7.1 cm. b) Find expressions for the electric field, as a function of the radius r, between the sphere and the shell (a < r < b). Evaluate for r=31.2 cm. c) Find expressions for the electric field, as a function of the radius r, inside the shell (b < r < c). Evaluate for r = 49.3 cm. d) Find expressions for the electric field, as a function of the radius r, outside the shell (r > c). Evaluate for r = 51.3 cm. e) What is the charge on the outer surface of the shell?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY