Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 26QLP
Explain the similarities and differences in the design guidelines for turning and for boring.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius= 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness
can be read on the figure below)
Equations used;
Ra
Ri
Actual
Ratio Theoretical
32NR
= rai Ri
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0
Ductile metals
Cast irons
Free machining alloys.
100
30.5
200
Cutting speed-ft/min
61
Cutting speed - m/min
300
91.5
400
122
The end of a large tubular workpart is to be faced on a NC vertical boring mill.
The part has an outside diameter of 38.0 in and an inside diameter of 24.0
in. If the facing operation is performed at a rotational speed of 40.0 rev/min,
feed of 0.015 in/rev, and depth of cut of 0.180 in, determine (a) the cutting
time to complete the facing operation and the cutting speeds and metal
removal rates at the beginning and end of the cut.
A turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius = 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness can
be read on the figure below)
Equations used
R₁ =
f²
32NR
Ra = rai Ri
Actual
Theoretical
Ratio=
2.4
2.2
2.0
1.8
1.4
1.2
1.0
0
Ductile metals
Cast irons
Free machining alloys
100
I
30.5
200
Cutting speed-ft/min
I
61
300
91.5
Cutting speed - m/min
T
400
I
122
Chapter 23 Solutions
Manufacturing Engineering & Technology
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A number of through holes with 10-mm-diameter have been drilled through 30-mm thick cast iron plate. At a cutting speed of 25 m/min, the high-speed steel drill tool lasted for 44 holes. But, when the cutting speed increased to 35 m/min, the drill tool lasted for only five holes. The feed used in the both cases is 0.08 mm/rev. Determine the values of n and Cin the Taylor tool life equation for the data, where cutting speed v is expressed in m/min, and tool life T is expressed in min.arrow_forwardIdentify the steps required in mounting the work piece using a 4-jaw independent chuck. Explain why a 4-jaw independent chuck can provide better accuracy than using a 3-jaw universal chuck.arrow_forwardCalculate the machining time to drill four 20 mm diameter holes and one 50 mm diameter central hole in the flange as shown below. Take cutting speed 20 m/min, feed for 20 mm drill 0.2 mm/rev, and for 50 mm drill feed is 0.6 mm/rev, the point angle is 120°? VIVER 20xA 200 D100 SYLON 50arrow_forward
- Q1. Calculate the time required to machine a workpiece 170 mm long, 60 mm diameter to 165 mm long 50 mm diameter. The workpiece rotates at 440 rpm, feed is 0.3 mm/rev and maximum depth of cut is 2 mm. Assume total approach and overtravel distance as 5 mm for turning operation. Answer Q2. A gray cast iron surface 280 wide and 540mm long may be machined either on a vertical milling machine, using a 100mm - diameter face mill having eight inserted HSS teeth, or on a horizontal milling machine using an HSS slab mill with eight teeth on a 200-mm. diameter. Which machine has the faster cutting time? The values of feed per tooth and cutting speed for both processes are 0.4mm/tooth and 80m/min, respectively. The depth of cut = 3.0 mm and assume A and O equal to 5. Answerarrow_forwardTaper turning is performed on a mild steel specimen, using the given data determine the following. of () Large diameter of the taper is 31.5 mm (ii) Spindle speed is 190 rpm, feed is 0.2 mm/rev & Depth of cut is 0.5 mm tion (ii) 1.5 minutes and 17.7 minutes are respective time required to complete one single taper turning operation and total time required to complete the taper turning operation Find (a) Cutting speed in m/minutes - (* (b) Taper Length in mm - (1 (c) Taper angle in degreearrow_forwardIn a production turning operation, the workpart is 60 mm in diameter and 500 mm long. A feed of 0.75 mm/rev is used in the operation. If cutting speed=9 m/s, the tool must be changed every 4 workparts; But if cutting speed=5 m/s, the tool can be used to produce 50 pieces between tool changes. Determine the Taylor tool life equation for this job. (use the equations given below for solution)arrow_forward
- What’s the answer for this pleasearrow_forwardIdentify and explain the method of milling process in which the stresses on the teeth is maximum at the end of the cut with neat diagram.arrow_forwardA 12" through hole is to be drilled in a 1 inch thick steel plate. A standard twist drill having a nose angle of 120 degrees is to be used. The drill press is set to operate at a cutting speed of 20 feet per minute and a feed of 0.010 ipr. What is the machining time required to drill the hole?arrow_forward
- Find the machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by using a carbide insert. If the approach length and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mmarrow_forwardThe outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardA 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License