Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 46QTP
For the data in Problem 23.45, calculate the power required.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
for an ideal machine mechanical advantage is 20 then its velocity ratio is
A hydraulic press is used to apply 500 lbs of force to press fit an assembly. The cylinder has a 2" piston and 1.5" rod, and a 16" stroke length. What flow rate (in gpm) is required to extend the press in 6 seconds?
A motorised metal guillotine machine is required to cut 45 mm diameter hole in
a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque
of 7 Nm for an area of hole in mm2. If the cutting takes 1/10 of a second and
the speed of its flywheel varies from 165 rpm to 145 rpm, calculate:
4.1.
Energy required to cut a hole.
4.2.
Energy required for cutting work per second.
43.
Maximum fluctuation of energy of the flywheel.
4.4.
Mass of the flywheel having radius of gyration of 1.5 m.
Chapter 23 Solutions
Manufacturing Engineering & Technology
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please solve question 2,3 and 13. Determine the % change in the machine time for an USM operation cutting WC plate when the tool material is changed from copper to stainless steel. Take ratio of flow stress of WC to flow stress of copper is 4.6 and the ratio of flow stress of WC to the flow stress of SST is 1.2.arrow_forwardA motorised metal guillotine machine is required to cut 45 mm diameter hole in a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque of 7 Nm for an area of hole in mm². If the cutting takes 1/10 of a second and the speed of it's flywheel varies from 165 rpm to 145 rpm, calculate 4.1)Energy required to cut a hole 4.2)Energy required for cutting work per second. 4.3)Maximum fluctuation of energy of the flywheel 4.4)Mass of the flywheel having radius of gyrations of 1,5 marrow_forwardThe total work flow times reached 80 hours in one machine and for five works using your evaluation indicators, calculate the average flow time?arrow_forward
- 7. Please compare the efficiency of a tubular bowl centrifuge to a disc-stack centrifuge. The comparison should be made based on the sigma value equations for the two types of centrifuges. Make sure you refer to the variables in these equations for your discussion.arrow_forwardcalculate : Output - 200 lakhs energy input - 7% of output material input - 250% of energy input Calculate partial productivity of the given .arrow_forwardHi, could you show workings out if possible please, thanks youarrow_forward
- A selection between advanced machining operation and conventional machine operation is to be made for mass production of 1000 parts. The part is a 20mm thick stainless steel plate and a hole of 10mm must be drilled. Calculate time required, material removal rate and feed rate for both processes to make a known decision to save production cost. The ECM process require 1000amp current with an expected efficiency of 90% whereas the conventional drilling is to be done with 8mm drill through hole. The point angle is 118°. The cutting speed is 15m/min and the feed is 0.30 mm/rev. The part handling time for ECM is 1min whereas for conventional process is 1.5min with the use of jig.arrow_forwardNeed your help. List at least 3 proposal title for Machine Design and for Thesis 1.arrow_forwardDescribe the work done is proportional to the force applied (F ) and the distance traveled (s).arrow_forward
- 3. Charcoal grills are in cartons 30 X 30 X 24 inches high. A total of 2,400 grills are required in every shift. The plant runs on 3 shifts, each for 8 hrs. There is a 50 minutes scheduled down time (breaks, etc.) and its anticipated performance is at 80%. Calculate the plant rate and the required conveyor belt speed to meet the production.arrow_forwardNeed your help. List atleast 3 possible title for Machine Design and for Thesis 1arrow_forwardSclect an appropriate manufacturing process where dimension accuracy and precisions are critical. Assume the material is aluminum alloy and the part is to be used for automotive power transmission device. Produce a manufacturing drawing with a list of tools require to manufacture the part.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Robot Revolution: The New Age of Manufacturing | Moving Upstream; Author: Wall Street Journal;https://www.youtube.com/watch?v=HX6M4QunVmA;License: Standard Youtube License