Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 49QTP
Assuming that the coefficient of friction is 0.25, calculate the maximum depth of cut for turning a hard aluminum alloy on a 20-hp lathe (with a
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A student is using a lathe with 80-hp and 80% efficiency to fabricate a copper alloy with Sy = 1200ksi If the width of cut is 0.30 inand the student set a rake angle of 0and a cutting speed of 200fl / min while she assumed a coefficient of friction to be 0.5. What is the maximum depth of cut the student can achieve?
In orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool. the cutting velocity is 90 m/min The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm If the orthogonal rake angle is zero and the principal cutting edge angle is 90°
Calculate the shear angle in degree.
In a turning operation on low carbon steel with hardness = 135 HB, the cutting speed = 180 m/min, feed = 0.35 mm/rev, and depth of cut = 6.5 mm. The
original work piece has 26 mm Diameter and 120 mm Length. How much power will the lathe draw in performing this operation if its mechanical efficiency =
90% and operator's efficiency = 82%? The specific energy is 3.8 J/mm³
Chapter 23 Solutions
Manufacturing Engineering & Technology
Ch. 23 - Describe the types of machining operations that...Ch. 23 - What is turning? What kind of chips are produced...Ch. 23 - What is the thrust force in turning? What is the...Ch. 23 - What are the components of a lathe?Ch. 23 - (a) What is a tracer lathe? (b) What is an...Ch. 23 - Describe the operations that can be performed on a...Ch. 23 - Why were power chucks developed?Ch. 23 - Explain why operations such as boring on a lathe...Ch. 23 - Why are turret lathes typically equipped with more...Ch. 23 - Describe the differences between boring a...
Ch. 23 - How is drill life determined?Ch. 23 - What is the difference between a conventional...Ch. 23 - Why are reaming operations performed?Ch. 23 - Explain the functions of the saddle on a lathe.Ch. 23 - Describe the relative advantages of (a)...Ch. 23 - Explain how external threads are cut on a lathe.Ch. 23 - Prob. 17RQCh. 23 - Explain the reasoning behind the various design...Ch. 23 - Note that both the terms tool strength and...Ch. 23 - (a) List and explain the factors that contribute...Ch. 23 - Explain why the sequence of drilling, boring, and...Ch. 23 - Why would machining operations be necessary even...Ch. 23 - A highly oxidized and uneven round bar is being...Ch. 23 - Describe the difficulties that may be encountered...Ch. 23 - (a) Does the force or torque in drilling change as...Ch. 23 - Explain the similarities and differences in the...Ch. 23 - Describe the advantages and applications of having...Ch. 23 - Assume that you are asked to perform a boring...Ch. 23 - Explain the reasons for the major trend that has...Ch. 23 - Describe your observations concerning the contents...Ch. 23 - The footnote to Table 23.12 states that as the...Ch. 23 - In modern manufacturing, which types of metal...Ch. 23 - Sketch the tooling marks you would expect if a...Ch. 23 - What concerns would you have in turning a powder...Ch. 23 - The operational severity for reaming is much lower...Ch. 23 - Review Fig. 23.6, and comment on the factors...Ch. 23 - Explain how gun drills remain centered during...Ch. 23 - Comment on the magnitude of the wedge angle on the...Ch. 23 - If inserts are used in a drill bit (see Fig....Ch. 23 - Refer to Fig. 23.11b, and in addition to the tools...Ch. 23 - Calculate the same quantities as in Example 23.1...Ch. 23 - Estimate the machining time required to rough turn...Ch. 23 - A high-strength cast-iron bar 8 in. in diameter is...Ch. 23 - A 0.30-in.-diameter drill is used on a drill press...Ch. 23 - In Example 23.4, assume that the workpiece...Ch. 23 - For the data in Problem 23.45, calculate the power...Ch. 23 - A 6-in.-diameter aluminum cylinder 10 in. in...Ch. 23 - A lathe is set up to machine a taper on a bar...Ch. 23 - Assuming that the coefficient of friction is 0.25,...Ch. 23 - A 3-in.-diameter, gray cast iron cylindrical part...Ch. 23 - Would you consider the machining processes...Ch. 23 - Would it be difficult to use the machining...Ch. 23 - If a bolt breaks in a hole, it typically is...Ch. 23 - An important trend in machining operations is the...Ch. 23 - Review Fig. 23.8d, and explain if it would be...Ch. 23 - Boring bars can be designed with internal damping...Ch. 23 - A large bolt is to be produced from extruded...Ch. 23 - Make a comprehensive table of the process...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A student is using a lathe with 80-hp and 80% efficiency to fabricate a copper alloy with Sy= 1200 ksi. If the width of cut is 0.30 in. and the student set a rake angle of 0° and a cutting speed of 200 ft/ min while she assumed a coefficient of friction to be 0.5. What is the maximum depth of cut the student can achieve?arrow_forwardThe outside diameter of a cylinder made of steel is to be turned. The starting diameter is 120 mm and the length is 1400 mm. The feed is 0.3 mm/rev and the depth of cut is 2.5mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.33 and C=500. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time required to complete this turning operation.arrow_forwardIn turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward
- Parvinbhaiarrow_forwardAssuming that the coefficient of friction is 0.25, calculate the maximum depth of cut forturning a hard aluminium alloy on a 15-kW lathe (with a mechanical efficieny of 80%) at awidth of cut of 6 mm, rake angle of 0˚, and a cutting speed of 90 m/min, shear strength of 150 MPa.arrow_forwardA turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius= 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness can be read on the figure below) Equations used; Ra Ri Actual Ratio Theoretical 32NR = rai Ri 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0 Ductile metals Cast irons Free machining alloys. 100 30.5 200 Cutting speed-ft/min 61 Cutting speed - m/min 300 91.5 400 122arrow_forward
- It is required to reduce the thickness of cast iron workpiece with dimensions (L x w x t) of (230 mm x 120 mm x 25 mm) to 22 mm using shaper machine. Given that average cutting speed is 21 m/min, feed 1.2 mm/double stroke, and return/cutting time ratio is 3/4. The approach at each end is 72 mm. If the permissible depth of cut is 2 mm, determine the cutting time in the following cases: i) Using shaper with a mechanically driven ram. ii) Using shaper with a hydraulically driven ram. Solution: i) Mechanically ( ii) Hydraulicallyarrow_forwardacross the surface and (b) the maximum metal removal rate during cutting A slab milling operation is performed on the top surface of a steel rectangular workpiece 12.0 in long by 2.5 in wide. The helical milling cutter, which has a 3.0 in diameter and ten teeth, is set up to overhang the width of the part on both sides. Cutting speed is 125 ft/min, feed is 0.006 in/tooth, and depth of cut = 0.300 in. Determine (a) the actual machining time to make one pass across the surface and (b) the maximum metal removal rate during the cut. (c) If an additional approach distance of 0.5 in is provided at the beginning of the pass (before cutting begins), and an overtravel distance is provided at the end of the pass equal to the cutter radius plus 0.5 in, what is the duration of the feed motion.arrow_forward3. It is required to machine a slot with length 100 mm, width 15 mm, and depth 4 mm. Calculate the length and pitch of the broach assuming a super-elevation of 0.15 mm/tooth. Calculate the main power in KW if the specific cutting resistance is 2000 N/mm2 and the cutting speed of 10 m/min is used.arrow_forward
- 3. Draw the forces and angles involved in the cutting process and calculate shear angle (Ø), friction coefficient and tangential force if ,cutting force = 80 kN , resultant of forces =100kN , friction force=75kN, rake angle =20° undeformed chip thickness = 0.65mm and deformed chip thickness = 0.72mm .arrow_forwardFind the machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by using a carbide insert. If the approach length and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mmarrow_forwardA slab-milling operation is carried out on a 200 mm long, 80-mm-wide annealed mild-steel workpiece having a feedrate of 0.1 mm/tooth and a depth of cut of 4.0 mm. The cutter of 50 mm diameter has 18 straight teeth and rotates at 135 rpm. The given specific energy for this material is 3.5 W s/mm3 and the slab mill is wider than the workpiece to be machined. Calculate:‧ the material-removal rate;‧ the power and torque required for this operation;‧ the cutting time. (243 mm/min, 77760 mm3/min, 4.5 kW, 52.8 s)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY