Physics: Principles with Applications
Physics: Principles with Applications
6th Edition
ISBN: 9780130606204
Author: Douglas C. Giancoli
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 37P

(a)

To determine

The magnetic field midway between two long straight current-carrying wires for the given condition.

(a)

Expert Solution
Check Mark

Answer to Problem 37P

The net magnetic field in between the current-carrying wires flowing in the same direction is

  (2×105)(I15)T .

Explanation of Solution

Given:

Two long straight wires are 2 cm apart. Current in one wire is I and other carries a current of 15 A in same direction.

Formula used:

Magnetic field in the current-carrying wire is calculated as

  B=μ0I2πr

Calculation:

If the current in the two wires is in the same direction then the magnetic field at the midway to both the wires will oppose each other and so the net magnetic field will be the difference of both.

  Bnet=μ0I12πr1μ0I22πr2Bnet=(4π×107)2π(1×102)(I15)Bnet=(2×105)(I15)

Conclusion:

The net magnetic field in between the current-carrying wires flowing in the same direction is (2×105)(I15)T .

(b)

To determine

The magnetic field midway between two long straight current-carrying wires for the given condition.

(b)

Expert Solution
Check Mark

Answer to Problem 37P

The net magnetic field in between the current-carrying wires flowing in the opposite direction is

  (2×105)(I+15)T .

Explanation of Solution

Given:

Two long straight wires are 2 cm apart. Current in one wire is I and other carries a current of 15 A in opposite direction.

Formula used:

Magnetic field in the current-carrying wire is calculated as

  B=μ0I2πr

Calculation:

If the current in the two wires is in the opposite direction then the magnetic field at the midway to both the wires will attract each other and so the net magnetic field will be the sum of both.

  Bnet=μ0I12πr1+μ0I22πr2Bnet=(4π×107)2π(1×102)(I+15)Bnet=(2×105)(I+15)T

Conclusion:

The net magnetic field in between the current-carrying wires flowing in the opposite direction is (2×105)(I+15)T .

Chapter 20 Solutions

Physics: Principles with Applications

Ch. 20 - Prob. 11QCh. 20 - Prob. 12QCh. 20 - 13. Explain why a strong magnet held near a CRT...Ch. 20 - Prob. 14QCh. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - If a moving charged particle is deflected sideways...Ch. 20 - Prob. 19QCh. 20 - Prob. 20QCh. 20 - Prob. 21QCh. 20 - Prob. 22QCh. 20 - Prob. 23QCh. 20 - Why will either pole of a magnet attract an...Ch. 20 - Prob. 25QCh. 20 - Prob. 26QCh. 20 - Prob. 27QCh. 20 - Prob. 28QCh. 20 - Prob. 29QCh. 20 - Prob. 30QCh. 20 - Prob. 31QCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - A 240-m length of wire stretches between two...Ch. 20 - Prob. 4PCh. 20 - Prob. 5PCh. 20 - Prob. 6PCh. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - Prob. 10PCh. 20 - Prob. 11PCh. 20 - Find the direction of the force on a negative...Ch. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - Prob. 18PCh. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 21PCh. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - Prob. 27PCh. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - Prob. 30PCh. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - Prob. 33PCh. 20 - Prob. 34PCh. 20 - Prob. 35PCh. 20 - Prob. 36PCh. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - Prob. 39PCh. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - Prob. 44PCh. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Prob. 49PCh. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - Prob. 53PCh. 20 - A circular coil 12.0 cm in diameter and containing...Ch. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58PCh. 20 - Prob. 59PCh. 20 - Prob. 60PCh. 20 - Prob. 61PCh. 20 - Prob. 62PCh. 20 - Prob. 63PCh. 20 - Prob. 64PCh. 20 - Prob. 65PCh. 20 - Prob. 66PCh. 20 - Prob. 67GPCh. 20 - Prob. 68GPCh. 20 - Prob. 69GPCh. 20 - Prob. 70GPCh. 20 - Prob. 71GPCh. 20 - Prob. 72GPCh. 20 - Prob. 73GPCh. 20 - Prob. 74GPCh. 20 - Prob. 75GPCh. 20 - Prob. 76GPCh. 20 - Prob. 77GPCh. 20 - Prob. 78GPCh. 20 - Prob. 79GPCh. 20 - Prob. 80GPCh. 20 - Prob. 81GPCh. 20 - Prob. 82GPCh. 20 - Prob. 83GPCh. 20 - Prob. 84GPCh. 20 - Prob. 85GPCh. 20 - Prob. 86GPCh. 20 - Prob. 87GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY