Concept explainers
(a)
The magnitude and direction of the current in the lower wire.
(a)
Answer to Problem 42P
The current in the lower wire is
Explanation of Solution
Given:
The given figure is shown below.
Current carried by upper horizontal wire is
Formula used:
The magnetic force is given by the formula
Calculation:
Using the right-hand rule, the magnetic force exerted on the lower wire is in an upwards direction. Now, since every force must be balanced. Thus, the magnetic force exerted upwards must be balanced by the gravitational force experienced downwards. Considering the length of the lower copper wire as
Conclusion:
Thus, for the magnetic force to be exerted upwards, the current must be in the right direction and the magnitude of the current in the lower wire is
(b)
To identify: Whether the lower wire in stable equilibrium.
(b)
Answer to Problem 42P
The lower wire is not in a stable equilibrium.
Explanation of Solution
Given:
The given figure is shown below.
Current carried by upper horizontal wire is
Formula used:
The magnetic force is given by the formula
Calculation:
To maintain stable equilibrium, all the forces exerted on any object must be balanced by the counter forces exerted by it.
Here, the magnetic force exerted on the copper wire is balanced by the gravitational force downwards. If wire moves a little bit farther from the top wire then the magnetic force weakens and the gravitational force supersedes. Thus, it will keep moving downwards, and farther it goes away from the top wire. Hence, the copper wire will not be in stable equilibrium.
Conclusion:
The lower Copper wire is not in a stable equilibrium.
(c)
The magnitude and direction of the current in the upper wire.
To identify: Whether the upper wire is in stable equilibrium or not.
(c)
Answer to Problem 42P
The current in the copper wire is
Explanation of Solution
Given:
Current carried by horizontal wire is
Formula used:
The magnetic force is given by the formula
Calculation:
Even if the wire is displaced in the opposite direction i.e. in the upward direction. The magnetic force exerted on it will be upwards and with the same magnitude of
To maintain stable equilibrium, all the forces exerted on any object must be balanced by the counter forces exerted by it. Here, the magnetic force exerted on the Copper wire is balanced by the gravitational force downwards. If wire moves a little bit upwards then the magnetic force decreases and the gravitational force supersedes and it will bring the wire in the original position.
If distance between both the wires decreases then magnetic force on the Copper wire increases and it will tend to move it back to its original position.
Thus, no matter, how the distance varies between both the wires. Copper wire will remain in stable equilibrium.
Conclusion:
Thus, for the magnetic force to be exerted upwards, the current must be in the left direction and the magnitude of the current in the upper wire is
Chapter 20 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Applications and Investigations in Earth Science (9th Edition)
Microbiology: An Introduction
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Campbell Essential Biology (7th Edition)
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- No chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forward
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON