
Concept explainers

Answer to Problem 14Q
To identify the two iron rods which are magnetised out of three iron rods.
Solution:
Explanation of Solution
Two iron rods are magnetised out of three iron rods.
A magnet can attract another magnet (unlike pole)as well as an iron rod. But it will repel like pole of another magnet. Hence repulsion is the sure test of magnetism. To identify the two iron rods which are magnetised out of three iron rods, consider one pole of any one rod, and bring this close to the poles of another rod. It may attract or repel. We must try all permutation till two poles repel each other, which confirms that the two rods are magnetised.
Conclusion:
Two iron rods are magnetised out of three iron rods.
Chapter 20 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Microbiology with Diseases by Body System (5th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
College Physics: A Strategic Approach (3rd Edition)
- Find the integral expression for the magnetic field at x=5 y=6 due to a wire on the x axis with length 5 meters onend at x=0 and the other at x=5. Don’t take the integralarrow_forwardTwo very long wires carry current along y-axis. First is at x=0 0.45 amps current is upward. Second at x=5 currentwith 0.65 amps current downward. Find the net magnetic a) Two meters to the left of the first wire. b) Twometers to the right of the first wire. a) Two meters to the right of the second wire. b) Two meters to the right ofthe second wire.arrow_forward! Required information The PV diagram shown is for a heat engine that uses 1.030 mol of a diatomic ideal gas as its working substance. In the constant-temperature processes A and C, the gas is in contact with reservoirs at temperatures 373 K and 273 K, respectively. In constant-volume process B, the gas temperature decreases as heat flows into the cold reservoir. In constant- volume process D, the gas temperature increases as heat flows from the hot reservoir. Pressure (kPa) 160 150 A 140 D 373 K 130 120 110 100 273 K C 90 80 B 0.019 0.02 0.021 0.022 0.023 0.024 0.025 0.026 Volume (m³) To compare the efficiency of the heat engine to that of an ideal engine, what is the ratio of the efficiency of an ideal engine using the same reservoirs to that of the heat engine, if the heat input per cycle is 2854 J?arrow_forward
- 4 1.00 mol of oxygen gas (O2) is heated at a constant pressure of 1.00 atm from 10.0°C to 25.0°C. How much heat is absorbed by the gas? Multiple Choice О 389 J о 544 J О 436 J О 288 Jarrow_forwardIL 6. For the sentence, why are the red lines representing the formants and the blue line representing the fundamental frequency always angled instead of horizontal?arrow_forwardCH 57. A 190-g block is launched by compressing a spring of constant k = = 200 N/m by 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has frictional coefficient μ = 0.27. This frictional surface extends 85 cm, fol- lowed by a frictionless curved rise, as shown in Fig. 7.21. After it's launched, where does the block finally come to rest? Measure from the left end of the frictional zone. Frictionless μ = 0.27 Frictionless FIGURE 7.21 Problem 57arrow_forward
- 3. (a) Show that the CM of a uniform thin rod of length L and mass M is at its center (b) Determine the CM of the rod assuming its linear mass density 1 (its mass per unit length) varies linearly from λ = λ at the left end to double that 0 value, λ = 2λ, at the right end. y 0 ·x- dx dm=λdx x +arrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. please show all stepsarrow_forwardAromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s2×10−5m2/s. Part A Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.5 mm, about 6.5 ftft, in still air. Express your answer in hours to one significant figure.arrow_forward
- Rocket Science: CH 83. A rocket of mass M moving at speed v ejects an infinitesimal mass dm out its exhaust nozzle at speed vex. (a) Show that con- servation of momentum implies that M dy = vex dm, where dy is the change in the rocket's speed. (b) Integrate this equation from some initial speed v; and mass M; to a final speed vf and mass Mf Vf to show that the rocket's final velocity is given by the expression V₁ = V¡ + Vex ln(M¡/M₁).arrow_forwardFormant Freqmcy The horizontal dotted lines represent the formants. The first box represents the schwa sound. The second box is a different vowel. The scale is the same on each of these two vowels. Use the two formant contours to answer questions 12-16 SCHWA VOWEL 2 0.179362213 Time (s) 0.92125285 0.0299637119 4000 1079 Time(s) unknown 0.6843 13. Please describe what the tongue is doing to shift from the schwa to vowel 2? 14. Is vowel 2 a rounded or unrounded vowel? 15. Is vowel 2 a front or back vowel? 16. What vowel is vowel 2 (00, ee, ah) 0684285714arrow_forwardmicrowavearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





