Concept explainers
(a)
To find: The linear regression model and scatter graph.
The model of the given data
Given information
The table for the given data is below.
period | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 |
temperature | 2600 | 2390 | 3310 | 3720 | 4560 | 5110 | 6860 | 8820 | 9650 |
The equation is
The values are calculated using the following table
x | y | x2 | x3 | x4 | x·y | x2·y |
1 | 2600 | 1 | 1 | 1 | 2600 | 2600 |
6 | 2390 | 36 | 216 | 1296 | 14340 | 86040 |
11 | 3310 | 121 | 1331 | 14641 | 36410 | 400510 |
16 | 3720 | 256 | 4096 | 65536 | 59520 | 952320 |
21 | 4560 | 441 | 9261 | 194481 | 95760 | 2010960 |
26 | 5110 | 676 | 17576 | 456976 | 132860 | 3454360 |
31 | 6860 | 961 | 29791 | 923521 | 212660 | 6592460 |
36 | 8820 | 1296 | 46656 | 1679616 | 317520 | 11430720 |
41 | 9650 | 1681 | 68921 | 2825761 | 395650 | 16221650 |
--- | --- | --- | --- | --- | --- | --- |
∑x=189 | ∑y=47020 | ∑x·y=1267320 |
Substituting these values in the normal equations
9a+189b+5469c=47020
189a+5469b+177849c=1267320
5469a+177849b+6161829c=41151620
Solving these 3 equations,
Total Equations are 3
9a+189b+5469c=47020→(1)
189a+5469b+177849c=1267320→(2)
5469a+177849b+6161829c=41151620→(3)
Select the equations (1) and (2), and eliminate the variable a.
Select the equations (1) and (3), and eliminate the variable a.
Select the equations (4) and (5), and eliminate the variable b.
Now use back substitution method
From (6)
577500c=2470000
⇒c=2470000577500=4.2771
From (4)
-1500b-63000c=-279900
⇒-1500b-63000(4.2771)=-279900
⇒-1500b-269454.5455=-279900
⇒-1500b=-279900+269454.5455=-10445.4545
⇒b=-10445.4545-1500=6.9636
From (1)
9a+189b+5469c=47020
⇒9a+189(6.9636)+5469(4.2771)=47020
⇒9a+24707.3481=47020
⇒9a=47020-24707.3481=22312.6519
⇒a=22312.65199=2479.1835
Solution using Elimination method.
a=2479.1835,b=6.9636,c=4.2771
Now substituting this values in the equation is
Scatter graph of the following data given below
(b)
To find: The quadratic regression model and scatter graph.
The model of the given data
Given information
The table for the given data is below.
period | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 |
temperature | 2600 | 2390 | 3310 | 3720 | 4560 | 5110 | 6860 | 8820 | 9650 |
The equation is
The values are calculated using the following table
x | y | x2 | x3 | x4 | x5 | x6 | x·y | x2·y | x3·y |
1 | 2600 | 1 | 1 | 1 | 1 | 1 | 2600 | 2600 | 2600 |
6 | 2390 | 36 | 216 | 1296 | 7776 | 46656 | 14340 | 86040 | 516240 |
11 | 3310 | 121 | 1331 | 14641 | 161051 | 1771561 | 36410 | 400510 | 4405610 |
16 | 3720 | 256 | 4096 | 65536 | 1048576 | 16777216 | 59520 | 952320 | 15237120 |
21 | 4560 | 441 | 9261 | 194481 | 4084101 | 85766121 | 95760 | 2010960 | 42230160 |
26 | 5110 | 676 | 17576 | 456976 | 11881376 | 308915776 | 132860 | 3454360 | 89813360 |
31 | 6860 | 961 | 29791 | 923521 | 28629151 | 887503681 | 212660 | 6592460 | 204366260 |
36 | 8820 | 1296 | 46656 | 1679616 | 60466176 | 2176782336 | 317520 | 11430720 | 411505920 |
41 | 9650 | 1681 | 68921 | 2825761 | 115856201 | 4750104241 | 395650 | 16221650 | 665087650 |
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
∑x=189 | ∑y=47020 | ∑x2=5469 | ∑x3=177849 | ∑x4=6161829 | ∑x5=222134409 | ∑x6=8227667589 | ∑x·y=1267320 | ∑x2·y=41151620 | ∑x3·y=1433164920 |
Substituting these values in the normal equations
9a+189b+5469c+177849d=47020
189a+5469b+177849c+6161829d=1267320
5469a+177849b+6161829c+222134409d=41151620
177849a+6161829b+222134409c+8227667589d=1433164920
Solving these 4 equations,
Total Equations are 4
9a+189b+5469c+177849d=47020→(1)
189a+5469b+177849c+6161829d=1267320→(2)
5469a+177849b+6161829c+222134409d=41151620→(3)
177849a+6161829b+222134409c+8227667589d=1433164920→(4)
Select the equations (1) and (2), and eliminate the variable a.
Select the equations (1) and (3), and eliminate the variable a.
Select the equations (1) and (4), and eliminate the variable a.
Select the equations (5) and (6), and eliminate the variable b.
Select the equations (5) and (7), and eliminate the variable b.
Select the equations (8) and (9), and eliminate the variable c.
Now use back substitution method
From (10)
-22275000d=745500
⇒d=745500-22275000=-0.0335
From (8)
577500c+36382500d=2470000
⇒577500c+36382500(-0.0335)=2470000
⇒577500c-1217650=2470000
⇒577500c=2470000+1217650=3687650
⇒c=3687650577500=6.3855
From (5)
-1500b-63000c-2427000d=-279900
⇒-1500b-63000(6.3855)-2427000(-0.0335)=-279900
⇒-1500b-321062.2222=-279900
⇒-1500b=-279900+321062.2222=41162.2222
⇒b=41162.2222-1500=-27.4415
From (1)
9a+189b+5469c+177849d=47020
⇒9a+189(-27.4415)+5469(6.3855)+177849(-0.0335)=47020
⇒9a+23783.8317=47020
⇒9a=47020-23783.8317=23236.1683
⇒a=23236.16839=2581.7965
Solution using Elimination method.
a=2581.7965,b=-27.4415,c=6.3855,d=-0.0335
Now substituting this values in the equation is
Scatter graph of the model is given below.
(c)
To find: The cost of tuition fee in 2021.
According to quadratic regression the cost of tuition fee in 2021 is 11849 .
According to cubic regression the cost of tuition fee in 2021 is 14082
Given informationquadratic regression is
Substitute x=46 in the above equation
Cubic equation model is
Now Substitute x=46 in the above equation
(d)
To find: The end behaviour of the model.
The model of the given data
Given information
According to quadratic model the future expense will not go too high. But the cubic model says otherwise. It predicts that future expanse will be very high.
Chapter 2 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning