Concept explainers
(a).
To find: The real values of
The real value of
Given information:
Consider the given function.
Calculation:
When the given function
Thus, the real values of
(b).
To find: The real values of
The real values of
Given information:
Consider the given function.
Calculation:
When the given function
And
Therefore, the real values of
(c).
To find: The real values of
The real values of
Given information:
Consider the given function.
Calculation:
The given function
First find the boundary points of the function
Substitute the numerator and the denominator equal to zero, then calculate the values of
And
So, the boundary points of the function
Now, locate these boundary points on the number line (or sign chart) and dividing the number line into intervals and check the function
Therefore, the given function
Hence, the real values of
(d).
To find: The real values of
The real values of
Given information:
Consider the given function.
Calculation:
The given function
First find the boundary points of the function
Substitute the numerator and the denominator equal to zero, then calculate the values of
And
So, the boundary points of the function
Now, locate these boundary points on the number line (or sign chart) and dividing the number line into intervals and check the function
Therefore, the given function
Hence, the real values of
Chapter 2 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- Please help on this Math 1arrow_forward2. (5 points) Let f(x) = = - - - x² − 3x+7. Find the local minimum and maximum point(s) of f(x), and write them in the form (a, b), specifying whether each point is a minimum or maximum. Coordinates should be kept in fractions. Additionally, provide in your answer if f(x) has an absolute minimum or maximum over its entire domain with their corresponding values. Otherwise, state that there is no absolute maximum or minimum. As a reminder, ∞ and -∞ are not considered absolute maxima and minima respectively.arrow_forwardLet h(x, y, z) = — In (x) — z y7-4z - y4 + 3x²z — e²xy ln(z) + 10y²z. (a) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to x, 2 h(x, y, z). მ (b) Holding all other variables constant, take the partial derivative of h(x, y, z) with respect to y, 2 h(x, y, z).arrow_forward
- j) f) lim x+x ex g) lim Inx h) lim x-5 i) lim arctan x x700 lim arctanx 811xarrow_forward4. Evaluate the following integrals. Show your work. a) -x b) f₁²x²/2 + x² dx c) fe³xdx d) [2 cos(5x) dx e) √ 35x6 3+5x7 dx 3 g) reve √ dt h) fx (x-5) 10 dx dt 1+12arrow_forwardI just need help with evaluating these limits.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning