CHEMISTRY >CUSTOM<
14th Edition
ISBN: 9781259137815
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 90AP
The rate constant for the elementary reaction:
is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the reaction
Ni(s) + 4 CO(g) → Ni(CO)4(g).
At 30°C and Poo 1 atm, Ni reacts with
CO(g) to form Ni(CO)4 (g). At 200°C,
Ni(CO)4(g) decomposes to Ni(s) and CO(g).
This means
F
1.
the forward reaction is endothermic.
2.
a decrease in pressure favors the forward re-
action.
3.
the activation energy for the forward reaction
is greater than for the reverse reaction.
4.
K at 30°C is greater than K at 200°C.
5.
adding an inert gas like argon favors the for-
ward reaction.
For the following reaction, - Δ[C6H14]/Δt was found to be 6.2 x 10-3 M/s.
C6H14(g) --> C6H6(g) + 4H2(g)
Determine Δ[H2]/Δt for this reaction at the same time.
Select one:
a.
1.6 x10-3 M/s
b.
-1.6 x 10-3 M/s
c.
6.2 x 10-3 M/s
d.
2.5 x 10-2M/s
2. Data for the reaction 2 HI (g) → H₂ (g) + I₂ (g) are given in the table below:
Reaction temperature (K)
298
729
Chemical species
H₂ (g)
1₂ (g)
HI (g)
Кс
1.26 x 10-3
2.0 x 10-2
AHof (kJ/mol)
0
62.442
25.9
a. Calculate AH (in kJ/mol) using the AH values given. Show your work, and pay
attention to sig figs.
b. Calculate AH (in kJ/mol) using the yan't Hoff equation. Show your work, and pay
attention to sig figs.
Chapter 18 Solutions
CHEMISTRY >CUSTOM<
Ch. 18.1 - Practice Problem ATTEMPT
Determine the change in...Ch. 18.1 - Practice Problem BUILD To what fraction of its...Ch. 18.1 - Practice Problem CONCEPTUALIZE
Which equation is...Ch. 18.2 - Practice ProblemATTEMPT Calculate the standard...Ch. 18.2 - Practice Problem BUILD
In each of the following...Ch. 18.2 - Practice Problem CONCEPTUALIZE
For each reaction...Ch. 18.3 - Practice ProblemATTEMPT For each of the following...Ch. 18.3 - Practice Problem BUILD
Make a qualitative...Ch. 18.3 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 18.3 - 18.3.1 For which of the following physical...
Ch. 18.3 - 18.3.2 For which of the following chemical...Ch. 18.3 - 18.3.3 Identify the correct balanced equation and...Ch. 18.4 - Practice Problem ATTEMPT For each of the...Ch. 18.4 - Practice Problem BUILD (a) Calculate Δ S univ and...Ch. 18.4 - Practice Problem CONCEPTUALIZE The following table...Ch. 18.4 - Using data from Appendix 2, calculate Δ S ° (in...Ch. 18.4 - 18.4.2 Using data from Appendix 2, calculate (in...Ch. 18.4 - The diagrams show a spontaneous chemical reaction....Ch. 18.4 - 18.4.4 The diagrams show a spontaneous chemical...Ch. 18.5 - Practice Problem ATTEMPT
A reaction will be...Ch. 18.5 - Practice Problem BUILD
Given that the reaction is...Ch. 18.5 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 18.5 - A reaction for which Δ H and Δ S are both negative...Ch. 18.5 - At what temperature ( in ºC ) does a reaction go...Ch. 18.5 - 18.5.3 Using data from Appendix 2, calculate G°...Ch. 18.5 - 18.5.4 Calculate for the sublimation of iodine in...Ch. 18.6 - Practice Problem ATTEMPT
Calculate the standard...Ch. 18.6 - Practice problemBUILD For each reaction, determine...Ch. 18.6 - Prob. 1PPCCh. 18.6 - 18.6.1 For the reaction:
Ch. 18.6 - Consider the reaction: X ( g ) + Y(g) ⇄ Z( g ) for...Ch. 18.6 - The Δ G° for the reaction: N 2 ( g ) + 3H 2 (g) ⇄...Ch. 18.6 - 18.6.4 The for iron(III) hydroxide . For the...Ch. 18.7 - Practice Problem ATTEMPT
The molar heats of fusion...Ch. 18.7 - Practice Problem CONCEPTUALIZE
Explain why. in...Ch. 18.8 - Practice ProblemATTEMPT Δ G ° for the reaction: H...Ch. 18.8 - Practice ProblemBUILD What is the minimum partial...Ch. 18.8 - Practice Problem CONCEPTUALIZE Consider the...Ch. 18.9 - Practice Problem ATTEMPT Using data from Appendix...Ch. 18.9 - Practice ProblemBUILD K f for the complex ion Ag (...Ch. 18.9 - Practice Problem CONCEPTUALIZE Which of the...Ch. 18.10 - Practice ProblemATTEMPT Calculate G for the...Ch. 18.10 - Practice ProblemBUILD Ksp for Co(OH)2 at...Ch. 18.10 - Prob. 1PPCCh. 18 - 18.1
Which of the following must be negative for a...Ch. 18 - Δ G for a reaction is always negative when (a) Δ G...Ch. 18 - 18.3
The diagram shown here depicts a system at...Ch. 18 - The reaction shown here has Δ G º = -1 .83 kJ/mol...Ch. 18 - 18.1 Explain what is meant by a spontaneous...Ch. 18 - Prob. 2QPCh. 18 - Prob. 3QPCh. 18 - Describe what is meant by the term entropy. What...Ch. 18 - Prob. 5QPCh. 18 - Prob. 6QPCh. 18 - Prob. 7QPCh. 18 - Prob. 8QPCh. 18 - How does the entropy of a system change for each...Ch. 18 - Prob. 10QPCh. 18 - Prob. 11QPCh. 18 - Prob. 12QPCh. 18 - Prob. 13QPCh. 18 - Using the data in Appendix 2, calculate the...Ch. 18 - 18.15 Using the data in Appendix 2, calculate the...Ch. 18 - Prob. 16QPCh. 18 - Prob. 17QPCh. 18 - Prob. 18QPCh. 18 - 18.19 State the third law of thermodynamics in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Using data from Appendix 2, calculate Δ S rxn º...Ch. 18 - 18.23 Using data from Appendix 2, calculate for...Ch. 18 - Prob. 24QPCh. 18 - Why is it more convenient to predict the direction...Ch. 18 - What is the significance of the sign of Δ G sys ?Ch. 18 - From the following combinations of Δ H and Δ S ,...Ch. 18 - Prob. 28QPCh. 18 - Prob. 29QPCh. 18 - From the values of Δ H and Δ S , predict which of...Ch. 18 - Find the temperatures at which reactions with the...Ch. 18 - The molar heats of fusion and vaporization of...Ch. 18 - 18.33 The molar heats of fusion and vaporization...Ch. 18 - Prob. 34QPCh. 18 - Prob. 35QPCh. 18 - Prob. 36QPCh. 18 - Prob. 37QPCh. 18 - Prob. 38QPCh. 18 - Explain why Equation 18.14 is of great importance...Ch. 18 - Prob. 40QPCh. 18 - Prob. 41QPCh. 18 - Prob. 42QPCh. 18 - 18.43 Consider the following reaction at...Ch. 18 - Prob. 44QPCh. 18 - 18.45
(a)
Calculate and for the following...Ch. 18 - Prob. 46QPCh. 18 - Consider the decomposition of calcium carbonate:...Ch. 18 - Prob. 48QPCh. 18 - 18.49 At for the process:
is 8.6 kJ/mol....Ch. 18 - Prob. 50QPCh. 18 - What is a coupled reaction? What is its importance...Ch. 18 - What is the role of ATP in biological reactions?Ch. 18 - Prob. 53QPCh. 18 - 18.54 In the metabolism of glucose, the first step...Ch. 18 - Predict the signs of Δ H , Δ S , and Δ G of the...Ch. 18 - Prob. 56APCh. 18 - Prob. 57APCh. 18 - Prob. 58APCh. 18 - Prob. 59APCh. 18 - Prob. 60APCh. 18 - Ammonium nitrate ( NH 4 NO 3 ) dissolves...Ch. 18 - 18.62 Calculate the equilibrium pressure of due...Ch. 18 - Prob. 63APCh. 18 - Referring to Problem 18.63, explain why the ratio...Ch. 18 - 18.65 Which of the following are not state...Ch. 18 - 18.66 For reactions carried out under...Ch. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - A student looked up the Δ G f o , Δ H f o , and Δ...Ch. 18 - Consider the following Brønsted acid-base reaction...Ch. 18 - 18.71 At o K, the entropy of carbon monoxide...Ch. 18 - Prob. 72APCh. 18 - Consider the thermal decomposition of CaCO 3 :...Ch. 18 - Prob. 74QPCh. 18 - Prob. 75QPCh. 18 - Prob. 76QPCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - Prob. 79APCh. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - 18.83 Comment on the statement: “Just talking...Ch. 18 - Prob. 84APCh. 18 - Consider the reaction: N 2 ( g ) + O 2 ( g ) ⇄ 2...Ch. 18 - Prob. 86APCh. 18 - Consider the decomposition of magnesium carbonate:...Ch. 18 - Prob. 88APCh. 18 - Prob. 89APCh. 18 - 18.90 The rate constant for the elementary...Ch. 18 - A 74.6-g ice cube floats in the Arctic Sea. The...Ch. 18 - 18.92 Which of the following is not accompanied by...Ch. 18 - Prob. 93APCh. 18 - Give a detailed example of each of the following,...Ch. 18 - Prob. 95QPCh. 18 - 18.96 The standard enthalpy of formation and the...Ch. 18 - Prob. 97QPCh. 18 - Prob. 98QPCh. 18 - The following reaction was described as the cause...Ch. 18 - Comment on the feasibility of extracting copper...Ch. 18 - 18.101 One of the steps in the extraction of iron...Ch. 18 - Prob. 102APCh. 18 - Prob. 103APCh. 18 - Prob. 104APCh. 18 - 18.105 The enthalpy change in the denaturation of...Ch. 18 - Prob. 106APCh. 18 - Prob. 107APCh. 18 - Prob. 108APCh. 18 - Prob. 109APCh. 18 - Prob. 110APCh. 18 - 18.111 Carbon monoxide and nitric oxide are...Ch. 18 - Prob. 112APCh. 18 - Prob. 113APCh. 18 - 18.114 Many hydrocarbons exist as structural...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Prob. 3SEPPCh. 18 - Physical and Biological Sciences
In chemistry, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Silver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forwardThe direct reaction of iron(III) oxide. Fe2O3, to give iron and oxygen gas is a nonspontaneous reaction; normally, iron combines with oxygen to give rust (the oxide). Yet we do change iron(III) oxide, as iron ore, into iron metal. How is this possible? Explain.arrow_forwardMonochloroethane (C2H5Cl) can be produced by the direct reaction of ethane gas (C2H6) with chlorine gas or by the reaction of ethylene gas (C2H4) with hydrogen chloride gas. The second reaction gives almost a 100% yield of pure C2H5Cl at a rapid rate without catalysis. The first method requires light as an energy source or the reaction would not occur. Yet G for the first reaction is considerably more negative than G for the second reaction. Explain how this can be so.arrow_forward
- Silicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardThe reaction of carbon monoxide with hydrogen to form methanol is quite slow at room temperature. As a general rule, reactions go faster at higher temperatures. Suppose that you tried to speed up this reaction by increasing the temperature. (a) Assuming that rH does not change very much as the temperature changes, what effect would increasing the temperature have on rSsurroundings? (b) Assuming that rS for a reaction System does not change much as the temperature changes, what effect would increasing the temperature have on rSuniverse?arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forward
- Natural gas, which is mostly methane, CH4, is a resource that the United States has in abundance. In principle, ethane can be obtained from methane by the reaction 2CH4(g)C2H6(g)+H2(g) (a) Calculate G° at 25°C for the reaction. Comment on the feasibility of this reaction at 25°C. (b) Couple the reaction above with the formation of steam from the elements: H2(g)+12O2(g)H2O(g)G=228.6kJ What is the equation for the overall reaction? Comment on the feasibility of the overall reaction.arrow_forwardThe recycling of polymers represents only one industrial process that allows creating order in one location by creating greater disorder at some other location, often at a power plant. List three other industrial processes that must create disorder in the surroundings to generate the desired material.arrow_forwardThe following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forward
- Old-fashioned smelling salts consist of ammonium carbonate, (NH4)2CO3. The reaction for the decomposition of ammonium carbonate (NH4)2CO3(s)2NH3(g)+CO(g)+H2O(g) is endothermic. Would the smell of ammonia increase or decrease as the temperature is increased?arrow_forwardCalculate H when a 38-g sample of glucose, C6H12O6(s), burns in excess O2(g) to form CO2(g) and H2O() in a reaction at constant pressure and 298.15 K.arrow_forwardConsider the reaction 2SO2(g)+O2(g)2SO3(g) (a) Calculate G at 25C. (b) If the partial pressures of SO2 and SO3 are kept at 0.400 atm, what partial pressure should O2 have so that the reaction just becomes nonspontaneous (i.e., G=+1.0 k J)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY