CHEMISTRY >CUSTOM<
14th Edition
ISBN: 9781259137815
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 63AP
Interpretation Introduction
Interpretation:
Trouton’s rule is to be verified using the given data and the same ratio for ethanol and water is to be calculated.
Concept introduction:
According to Trouton’s Rule, the entropy of vaporization is approximately equal to
The entropy of vaporization is equal to the ratio of the molar heat of vaporization of a liquid to its boiling point temperature.
The equation is given below:
Here,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
CHEMISTRY >CUSTOM<
Ch. 18.1 - Practice Problem ATTEMPT
Determine the change in...Ch. 18.1 - Practice Problem BUILD To what fraction of its...Ch. 18.1 - Practice Problem CONCEPTUALIZE
Which equation is...Ch. 18.2 - Practice ProblemATTEMPT Calculate the standard...Ch. 18.2 - Practice Problem BUILD
In each of the following...Ch. 18.2 - Practice Problem CONCEPTUALIZE
For each reaction...Ch. 18.3 - Practice ProblemATTEMPT For each of the following...Ch. 18.3 - Practice Problem BUILD
Make a qualitative...Ch. 18.3 - Practice Problem CONCEPTUALIZE
Consider the...Ch. 18.3 - 18.3.1 For which of the following physical...
Ch. 18.3 - 18.3.2 For which of the following chemical...Ch. 18.3 - 18.3.3 Identify the correct balanced equation and...Ch. 18.4 - Practice Problem ATTEMPT For each of the...Ch. 18.4 - Practice Problem BUILD (a) Calculate Δ S univ and...Ch. 18.4 - Practice Problem CONCEPTUALIZE The following table...Ch. 18.4 - Using data from Appendix 2, calculate Δ S ° (in...Ch. 18.4 - 18.4.2 Using data from Appendix 2, calculate (in...Ch. 18.4 - The diagrams show a spontaneous chemical reaction....Ch. 18.4 - 18.4.4 The diagrams show a spontaneous chemical...Ch. 18.5 - Practice Problem ATTEMPT
A reaction will be...Ch. 18.5 - Practice Problem BUILD
Given that the reaction is...Ch. 18.5 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 18.5 - A reaction for which Δ H and Δ S are both negative...Ch. 18.5 - At what temperature ( in ºC ) does a reaction go...Ch. 18.5 - 18.5.3 Using data from Appendix 2, calculate G°...Ch. 18.5 - 18.5.4 Calculate for the sublimation of iodine in...Ch. 18.6 - Practice Problem ATTEMPT
Calculate the standard...Ch. 18.6 - Practice problemBUILD For each reaction, determine...Ch. 18.6 - Prob. 1PPCCh. 18.6 - 18.6.1 For the reaction:
Ch. 18.6 - Consider the reaction: X ( g ) + Y(g) ⇄ Z( g ) for...Ch. 18.6 - The Δ G° for the reaction: N 2 ( g ) + 3H 2 (g) ⇄...Ch. 18.6 - 18.6.4 The for iron(III) hydroxide . For the...Ch. 18.7 - Practice Problem ATTEMPT
The molar heats of fusion...Ch. 18.7 - Practice Problem CONCEPTUALIZE
Explain why. in...Ch. 18.8 - Practice ProblemATTEMPT Δ G ° for the reaction: H...Ch. 18.8 - Practice ProblemBUILD What is the minimum partial...Ch. 18.8 - Practice Problem CONCEPTUALIZE Consider the...Ch. 18.9 - Practice Problem ATTEMPT Using data from Appendix...Ch. 18.9 - Practice ProblemBUILD K f for the complex ion Ag (...Ch. 18.9 - Practice Problem CONCEPTUALIZE Which of the...Ch. 18.10 - Practice ProblemATTEMPT Calculate G for the...Ch. 18.10 - Practice ProblemBUILD Ksp for Co(OH)2 at...Ch. 18.10 - Prob. 1PPCCh. 18 - 18.1
Which of the following must be negative for a...Ch. 18 - Δ G for a reaction is always negative when (a) Δ G...Ch. 18 - 18.3
The diagram shown here depicts a system at...Ch. 18 - The reaction shown here has Δ G º = -1 .83 kJ/mol...Ch. 18 - 18.1 Explain what is meant by a spontaneous...Ch. 18 - Prob. 2QPCh. 18 - Prob. 3QPCh. 18 - Describe what is meant by the term entropy. What...Ch. 18 - Prob. 5QPCh. 18 - Prob. 6QPCh. 18 - Prob. 7QPCh. 18 - Prob. 8QPCh. 18 - How does the entropy of a system change for each...Ch. 18 - Prob. 10QPCh. 18 - Prob. 11QPCh. 18 - Prob. 12QPCh. 18 - Prob. 13QPCh. 18 - Using the data in Appendix 2, calculate the...Ch. 18 - 18.15 Using the data in Appendix 2, calculate the...Ch. 18 - Prob. 16QPCh. 18 - Prob. 17QPCh. 18 - Prob. 18QPCh. 18 - 18.19 State the third law of thermodynamics in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Calculate Δ S surr for each of the reactions in...Ch. 18 - Using data from Appendix 2, calculate Δ S rxn º...Ch. 18 - 18.23 Using data from Appendix 2, calculate for...Ch. 18 - Prob. 24QPCh. 18 - Why is it more convenient to predict the direction...Ch. 18 - What is the significance of the sign of Δ G sys ?Ch. 18 - From the following combinations of Δ H and Δ S ,...Ch. 18 - Prob. 28QPCh. 18 - Prob. 29QPCh. 18 - From the values of Δ H and Δ S , predict which of...Ch. 18 - Find the temperatures at which reactions with the...Ch. 18 - The molar heats of fusion and vaporization of...Ch. 18 - 18.33 The molar heats of fusion and vaporization...Ch. 18 - Prob. 34QPCh. 18 - Prob. 35QPCh. 18 - Prob. 36QPCh. 18 - Prob. 37QPCh. 18 - Prob. 38QPCh. 18 - Explain why Equation 18.14 is of great importance...Ch. 18 - Prob. 40QPCh. 18 - Prob. 41QPCh. 18 - Prob. 42QPCh. 18 - 18.43 Consider the following reaction at...Ch. 18 - Prob. 44QPCh. 18 - 18.45
(a)
Calculate and for the following...Ch. 18 - Prob. 46QPCh. 18 - Consider the decomposition of calcium carbonate:...Ch. 18 - Prob. 48QPCh. 18 - 18.49 At for the process:
is 8.6 kJ/mol....Ch. 18 - Prob. 50QPCh. 18 - What is a coupled reaction? What is its importance...Ch. 18 - What is the role of ATP in biological reactions?Ch. 18 - Prob. 53QPCh. 18 - 18.54 In the metabolism of glucose, the first step...Ch. 18 - Predict the signs of Δ H , Δ S , and Δ G of the...Ch. 18 - Prob. 56APCh. 18 - Prob. 57APCh. 18 - Prob. 58APCh. 18 - Prob. 59APCh. 18 - Prob. 60APCh. 18 - Ammonium nitrate ( NH 4 NO 3 ) dissolves...Ch. 18 - 18.62 Calculate the equilibrium pressure of due...Ch. 18 - Prob. 63APCh. 18 - Referring to Problem 18.63, explain why the ratio...Ch. 18 - 18.65 Which of the following are not state...Ch. 18 - 18.66 For reactions carried out under...Ch. 18 - Prob. 67APCh. 18 - Prob. 68APCh. 18 - A student looked up the Δ G f o , Δ H f o , and Δ...Ch. 18 - Consider the following Brønsted acid-base reaction...Ch. 18 - 18.71 At o K, the entropy of carbon monoxide...Ch. 18 - Prob. 72APCh. 18 - Consider the thermal decomposition of CaCO 3 :...Ch. 18 - Prob. 74QPCh. 18 - Prob. 75QPCh. 18 - Prob. 76QPCh. 18 - Prob. 77APCh. 18 - Prob. 78APCh. 18 - Prob. 79APCh. 18 - Prob. 80APCh. 18 - Prob. 81APCh. 18 - Prob. 82APCh. 18 - 18.83 Comment on the statement: “Just talking...Ch. 18 - Prob. 84APCh. 18 - Consider the reaction: N 2 ( g ) + O 2 ( g ) ⇄ 2...Ch. 18 - Prob. 86APCh. 18 - Consider the decomposition of magnesium carbonate:...Ch. 18 - Prob. 88APCh. 18 - Prob. 89APCh. 18 - 18.90 The rate constant for the elementary...Ch. 18 - A 74.6-g ice cube floats in the Arctic Sea. The...Ch. 18 - 18.92 Which of the following is not accompanied by...Ch. 18 - Prob. 93APCh. 18 - Give a detailed example of each of the following,...Ch. 18 - Prob. 95QPCh. 18 - 18.96 The standard enthalpy of formation and the...Ch. 18 - Prob. 97QPCh. 18 - Prob. 98QPCh. 18 - The following reaction was described as the cause...Ch. 18 - Comment on the feasibility of extracting copper...Ch. 18 - 18.101 One of the steps in the extraction of iron...Ch. 18 - Prob. 102APCh. 18 - Prob. 103APCh. 18 - Prob. 104APCh. 18 - 18.105 The enthalpy change in the denaturation of...Ch. 18 - Prob. 106APCh. 18 - Prob. 107APCh. 18 - Prob. 108APCh. 18 - Prob. 109APCh. 18 - Prob. 110APCh. 18 - 18.111 Carbon monoxide and nitric oxide are...Ch. 18 - Prob. 112APCh. 18 - Prob. 113APCh. 18 - 18.114 Many hydrocarbons exist as structural...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Physical and Biological Sciences
In chemistry, the...Ch. 18 - Prob. 3SEPPCh. 18 - Physical and Biological Sciences
In chemistry, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Enthalpy changes often help predict whether or not a process will be spontaneous. What type of reaction is more likely to be spontaneous: an exothermic or an endothermic one? Provide two examples that support your assertion and one counterexample.arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardWhen 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forward
- Athletic trainers use instant ice packs that can be cooled quickly on demand. Squeezing the pact breaks an inner container, allowing two components to mix and react. This reaction makes the pack become cold. Describe the heat flow for this spontaneous process.arrow_forwardHow is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forwardWhen vapors from hydrochloric acid and aqueous ammonia come in contact, they react, producing a white cloud of solid NH4C1 (Figure 18.9). HCI(g) + NH3(g) NH4Cl(s) Defining the reactants and products as the system under study: (a) Predict whether S(system), S(surroundings), S(universe), rH, and rG (at 298 K) are greater than zero, equal to zero, or less than zero; and explain your prediction. Verify your predictions by calculating values for each of these quantities. (b) Calculate the value of Kp for this reaction at 298 K.arrow_forward
- The enthalpy of combustion of liquid n-hexane, C6H14, is 4159.5 kJ/mol, and that of gaseous n-hexane is 4191.1 kJ/mol. Use Hesss law to determine H for the vaporization of 1 mol of n-hexane: C6H14() C6H14(g)arrow_forwardTwo crystalline forms of white phosphorus are known. Both forms contain P4 molecules, but the molecules are packed together in different ways. The form is always obtained when the liquid freezes. However, below 76.9C, the form spontaneously converts to the form: P4(s,)P4(s,) a. Predict the signs of H and S for this process. b. Predict which form of phosphorus has the more ordered crystalline structure (has the smaller positional probability).arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
- One statement of the second law of thermodynamics is that heat cannot be turned completely into work. Another is that the entropy of the universe always increases. How are these two statements related?arrow_forward10.101 Fluorine reacts with liquid water to form gaseous hydrogen fluoride and oxygen. (a) Write a balanced chemical equation for this reaction. (b) Use tabulated data to determine the free energy change for the reaction and comment on its spontaneity. (c) Use tabulated data to calculate the enthalpy change of the reaction. (d) Determine how much heat flows and in what direction when 34.5 g of fluorine gas is bubbled through excess water.arrow_forward9.42 Why is enthalpy generally more useful than internal energy in the thermodynamics of real world systems?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY