General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 18.82EP

(a)

Interpretation Introduction

Interpretation: The given Haworth projection formula is whether an αDmonosaccharide or a βDmonosaccharide has to be identified.

Concept introduction: The Haworth projection formula can be drawn by using the following rules.

  • Ø For α and β configurations, if hydroxyl group is drawn at the right position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn below the ring.
  • Ø If hydroxyl group is drawn at the left position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn above the ring.
  • Ø For β configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the same direction.
  • Ø For α configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the opposite direction.
  • Ø The hydroxyl group that is obtained from the carbonyl group can be placed above or below the ring which is dependent upon the ring closure of the cyclic form.
  • Ø For D configuration, CH2OH group always placed above the cyclic ring.
  • Ø For L configuration, CH2OH group always placed below the cyclic ring.

(a)

Expert Solution
Check Mark

Answer to Problem 18.82EP

The given Haworth projection formula is a βDmonosaccharide.

Explanation of Solution

The given Haworth projection formula is shown as,

General, Organic, and Biological Chemistry, Chapter 18, Problem 18.82EP , additional homework tip  1

Thus, in this Haworth projection formula of the given monosaccharide, CH2OH group is placed above the cyclic ring.  The position of OH group at the first carbon with respect to CH2OH group is in the same direction.  Thus, this Haworth projection formula is a βDmonosaccharide.

(b)

Interpretation Introduction

Interpretation: The given Haworth projection formula is whether an αDmonosaccharide or a βDmonosaccharide has to be identified.

Concept introduction: The Haworth projection formula can be drawn by using the following rules.

  • Ø For α and β configurations, if hydroxyl group is drawn at the right position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn below the ring.
  • Ø If hydroxyl group is drawn at the left position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn above the ring.
  • Ø For β configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the same direction.
  • Ø For α configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the opposite direction.
  • Ø The hydroxyl group that is obtained from the carbonyl group can be placed above or below the ring which is dependent upon the ring closure of the cyclic form.
  • Ø For D configuration, CH2OH group always placed above the cyclic ring.
  • Ø For L configuration, CH2OH group always placed below the cyclic ring.

(b)

Expert Solution
Check Mark

Answer to Problem 18.82EP

The given Haworth projection formula is an αDmonosaccharide.

Explanation of Solution

The given Haworth projection formula is shown as,

General, Organic, and Biological Chemistry, Chapter 18, Problem 18.82EP , additional homework tip  2

Thus, in this Haworth projection formula of the given monosaccharide, CH2OH group is placed above the cyclic ring.  The position of OH group at the first carbon with respect to CH2OH group is in the opposite direction.  Thus, this Haworth projection formula is an αDmonosaccharide.

(c)

Interpretation Introduction

Interpretation: The given Haworth projection formula is whether an αDmonosaccharide or a βDmonosaccharide has to be identified.

Concept introduction: The Haworth projection formula can be drawn by using the following rules.

  • Ø For α and β configurations, if hydroxyl group is drawn at the right position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn below the ring.
  • Ø If hydroxyl group is drawn at the left position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn above the ring.
  • Ø For β configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the same direction.
  • Ø For α configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the opposite direction.
  • Ø The hydroxyl group that is obtained from the carbonyl group can be placed above or below the ring which is dependent upon the ring closure of the cyclic form.
  • Ø For D configuration, CH2OH group always placed above the cyclic ring.
  • Ø For L configuration, CH2OH group always placed below the cyclic ring.

(c)

Expert Solution
Check Mark

Answer to Problem 18.82EP

The given Haworth projection formula is an αDmonosaccharide.

Explanation of Solution

The given Haworth projection formula is shown as,

General, Organic, and Biological Chemistry, Chapter 18, Problem 18.82EP , additional homework tip  3

Thus, in this Haworth projection formula of the given monosaccharide, CH2OH group is placed above the cyclic ring.  The position of OH group at the first carbon with respect to CH2OH group is in the opposite direction.  Thus, this Haworth projection formula is an αDmonosaccharide.

(d)

Interpretation Introduction

Interpretation: The given Haworth projection formula is whether an αDmonosaccharide or a βDmonosaccharide has to be identified.

Concept introduction: The Haworth projection formula can be drawn by using the following rules.

  • Ø For α and β configurations, if hydroxyl group is drawn at the right position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn below the ring.
  • Ø If hydroxyl group is drawn at the left position in Fischer projection formula then in the cyclic form of Haworth projection, the same OH group should be drawn above the ring.
  • Ø For β configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the same direction.
  • Ø For α configuration, the position of OH group at the first carbon with respect to CH2OH group always remains in the opposite direction.
  • Ø The hydroxyl group that is obtained from the carbonyl group can be placed above or below the ring which is dependent upon the ring closure of the cyclic form.
  • Ø For D configuration, CH2OH group always placed above the cyclic ring.
  • Ø For L configuration, CH2OH group always placed below the cyclic ring.

(d)

Expert Solution
Check Mark

Answer to Problem 18.82EP

The given Haworth projection formula is an αDmonosaccharide.

Explanation of Solution

The given Haworth projection formula is shown as,

General, Organic, and Biological Chemistry, Chapter 18, Problem 18.82EP , additional homework tip  4

Thus, in this Haworth projection formula of the given monosaccharide, CH2OH group is placed above the cyclic ring.  The position of OH group at the first carbon with respect to CH2OH group is in the opposite direction.  Thus, this Haworth projection formula is an αDmonosaccharide.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
As a medical professional, it is important to be able to discuss how genetic processes such as translation regulation can directly affect patients. Think about some situations that might involve translation regulation.   Respond to the following in a minimum of 175 words: Why is translation regulation important? What are some examples of translation regulation in humans? Select one of the examples you provided and explain what happens when translation regulation goes wrong.
The metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.
QUESTION 27 Label the structures marked A, B, C and explain the role of structure A. W plasma membrane For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ☐ Paragraph Π " ΩΘΗ Β Open Sans, a... 10pt EE

Chapter 18 Solutions

General, Organic, and Biological Chemistry

Ch. 18.4 - Prob. 3QQCh. 18.4 - Prob. 4QQCh. 18.5 - Prob. 1QQCh. 18.5 - Prob. 2QQCh. 18.6 - Prob. 1QQCh. 18.6 - Which of the following Fischer projection formulas...Ch. 18.6 - Prob. 3QQCh. 18.6 - Prob. 4QQCh. 18.7 - Prob. 1QQCh. 18.7 - Prob. 2QQCh. 18.8 - Prob. 1QQCh. 18.8 - Which of the following statements about...Ch. 18.8 - The smallest monosaccharides that can exist are a....Ch. 18.9 - Prob. 1QQCh. 18.9 - Prob. 2QQCh. 18.9 - Prob. 3QQCh. 18.9 - In which of the following pairs of monosaccharides...Ch. 18.9 - In which of the following pairs of monosaccharides...Ch. 18.10 - Prob. 1QQCh. 18.10 - Which of the following structures represents a...Ch. 18.10 - Prob. 3QQCh. 18.10 - Prob. 4QQCh. 18.10 - Prob. 5QQCh. 18.11 - Prob. 1QQCh. 18.11 - Which of the following is the correct Haworth...Ch. 18.12 - Prob. 1QQCh. 18.12 - Prob. 2QQCh. 18.12 - Prob. 3QQCh. 18.12 - Prob. 4QQCh. 18.12 - Prob. 5QQCh. 18.13 - Which of the following disaccharides contains...Ch. 18.13 - Which of the following disaccharides will produce...Ch. 18.13 - In which of the following disaccharides is the...Ch. 18.13 - In which of the following pairs of disaccharides...Ch. 18.13 - Which of the following disaccharides is not a...Ch. 18.13 - The terms milk sugar and table sugar apply,...Ch. 18.14 - Prob. 1QQCh. 18.14 - Prob. 2QQCh. 18.15 - Which of the following statements about...Ch. 18.15 - Prob. 2QQCh. 18.16 - Prob. 1QQCh. 18.16 - Which of the following storage polysaccharides is...Ch. 18.16 - Prob. 3QQCh. 18.16 - Which of the following statements about storage...Ch. 18.17 - Prob. 1QQCh. 18.17 - Which of the following statements about cellulose...Ch. 18.17 - Chitin is a polysaccharide in which the...Ch. 18.18 - Which of the following statements about the...Ch. 18.18 - Prob. 2QQCh. 18.19 - Which of the following is not classified as a...Ch. 18.19 - Prob. 2QQCh. 18.20 - Prob. 1QQCh. 18.20 - Which of the following is not a biochemical...Ch. 18 - Prob. 18.1EPCh. 18 - Prob. 18.2EPCh. 18 - Prob. 18.3EPCh. 18 - Prob. 18.4EPCh. 18 - Prob. 18.5EPCh. 18 - Prob. 18.6EPCh. 18 - Prob. 18.7EPCh. 18 - Prob. 18.8EPCh. 18 - Prob. 18.9EPCh. 18 - Prob. 18.10EPCh. 18 - Prob. 18.11EPCh. 18 - Prob. 18.12EPCh. 18 - Prob. 18.13EPCh. 18 - Prob. 18.14EPCh. 18 - Prob. 18.15EPCh. 18 - Prob. 18.16EPCh. 18 - Prob. 18.17EPCh. 18 - Prob. 18.18EPCh. 18 - Prob. 18.19EPCh. 18 - Prob. 18.20EPCh. 18 - Prob. 18.21EPCh. 18 - Prob. 18.22EPCh. 18 - Prob. 18.23EPCh. 18 - Prob. 18.24EPCh. 18 - Prob. 18.25EPCh. 18 - Prob. 18.26EPCh. 18 - Prob. 18.27EPCh. 18 - Prob. 18.28EPCh. 18 - Prob. 18.29EPCh. 18 - Prob. 18.30EPCh. 18 - Prob. 18.31EPCh. 18 - Prob. 18.32EPCh. 18 - Prob. 18.33EPCh. 18 - Prob. 18.34EPCh. 18 - Draw the Fischer projection formula for each of...Ch. 18 - Prob. 18.36EPCh. 18 - Prob. 18.37EPCh. 18 - Prob. 18.38EPCh. 18 - Prob. 18.39EPCh. 18 - Prob. 18.40EPCh. 18 - Prob. 18.41EPCh. 18 - Prob. 18.42EPCh. 18 - Prob. 18.43EPCh. 18 - Prob. 18.44EPCh. 18 - Prob. 18.45EPCh. 18 - Prob. 18.46EPCh. 18 - Prob. 18.47EPCh. 18 - Prob. 18.48EPCh. 18 - Prob. 18.49EPCh. 18 - Prob. 18.50EPCh. 18 - Prob. 18.51EPCh. 18 - Prob. 18.52EPCh. 18 - Prob. 18.53EPCh. 18 - Prob. 18.54EPCh. 18 - Prob. 18.55EPCh. 18 - Prob. 18.56EPCh. 18 - Prob. 18.57EPCh. 18 - Prob. 18.58EPCh. 18 - Prob. 18.59EPCh. 18 - Prob. 18.60EPCh. 18 - Prob. 18.61EPCh. 18 - Prob. 18.62EPCh. 18 - Prob. 18.63EPCh. 18 - Prob. 18.64EPCh. 18 - Prob. 18.65EPCh. 18 - Prob. 18.66EPCh. 18 - Prob. 18.67EPCh. 18 - Prob. 18.68EPCh. 18 - Prob. 18.69EPCh. 18 - Prob. 18.70EPCh. 18 - Prob. 18.71EPCh. 18 - Prob. 18.72EPCh. 18 - Prob. 18.73EPCh. 18 - Prob. 18.74EPCh. 18 - Prob. 18.75EPCh. 18 - Prob. 18.76EPCh. 18 - Prob. 18.77EPCh. 18 - Prob. 18.78EPCh. 18 - Prob. 18.79EPCh. 18 - Prob. 18.80EPCh. 18 - Prob. 18.81EPCh. 18 - Prob. 18.82EPCh. 18 - Prob. 18.83EPCh. 18 - Prob. 18.84EPCh. 18 - Prob. 18.85EPCh. 18 - Prob. 18.86EPCh. 18 - Prob. 18.87EPCh. 18 - Prob. 18.88EPCh. 18 - Prob. 18.89EPCh. 18 - Prob. 18.90EPCh. 18 - Prob. 18.91EPCh. 18 - Prob. 18.92EPCh. 18 - Prob. 18.93EPCh. 18 - Prob. 18.94EPCh. 18 - Prob. 18.95EPCh. 18 - Prob. 18.96EPCh. 18 - Prob. 18.97EPCh. 18 - Prob. 18.98EPCh. 18 - Prob. 18.99EPCh. 18 - Prob. 18.100EPCh. 18 - Prob. 18.101EPCh. 18 - Prob. 18.102EPCh. 18 - Prob. 18.103EPCh. 18 - Prob. 18.104EPCh. 18 - For each structure in Problem 18-103, identify the...Ch. 18 - For each structure in Problem 18-104, identify the...Ch. 18 - Prob. 18.107EPCh. 18 - Prob. 18.108EPCh. 18 - Prob. 18.109EPCh. 18 - Prob. 18.110EPCh. 18 - Prob. 18.111EPCh. 18 - Prob. 18.112EPCh. 18 - Prob. 18.113EPCh. 18 - Prob. 18.114EPCh. 18 - Prob. 18.115EPCh. 18 - Prob. 18.116EPCh. 18 - Prob. 18.117EPCh. 18 - Prob. 18.118EPCh. 18 - Prob. 18.119EPCh. 18 - Prob. 18.120EPCh. 18 - Prob. 18.121EPCh. 18 - Prob. 18.122EPCh. 18 - Prob. 18.123EPCh. 18 - Prob. 18.124EPCh. 18 - Prob. 18.125EPCh. 18 - Prob. 18.126EPCh. 18 - Prob. 18.127EPCh. 18 - Prob. 18.128EPCh. 18 - Prob. 18.129EPCh. 18 - Prob. 18.130EPCh. 18 - Prob. 18.131EPCh. 18 - Prob. 18.132EPCh. 18 - Prob. 18.133EPCh. 18 - Prob. 18.134EPCh. 18 - Prob. 18.135EPCh. 18 - Prob. 18.136EPCh. 18 - Prob. 18.137EPCh. 18 - Prob. 18.138EPCh. 18 - Prob. 18.139EPCh. 18 - Prob. 18.140EPCh. 18 - Prob. 18.141EPCh. 18 - Prob. 18.142EPCh. 18 - Prob. 18.143EPCh. 18 - Prob. 18.144EPCh. 18 - Prob. 18.145EPCh. 18 - Prob. 18.146EPCh. 18 - Prob. 18.147EPCh. 18 - Prob. 18.148EPCh. 18 - Prob. 18.149EPCh. 18 - Prob. 18.150EPCh. 18 - Prob. 18.151EPCh. 18 - Prob. 18.152EPCh. 18 - Prob. 18.153EPCh. 18 - Prob. 18.154EPCh. 18 - Prob. 18.155EPCh. 18 - Prob. 18.156EPCh. 18 - Prob. 18.157EPCh. 18 - Prob. 18.158EPCh. 18 - Prob. 18.159EPCh. 18 - Prob. 18.160EPCh. 18 - Prob. 18.161EPCh. 18 - Prob. 18.162EPCh. 18 - Prob. 18.163EPCh. 18 - Prob. 18.164EPCh. 18 - Prob. 18.165EPCh. 18 - Prob. 18.166EPCh. 18 - Prob. 18.167EPCh. 18 - Prob. 18.168EPCh. 18 - Prob. 18.169EPCh. 18 - Prob. 18.170EPCh. 18 - Describe the general features of the cell...Ch. 18 - Prob. 18.172EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College
Text book image
Curren'S Math For Meds: Dosages & Sol
Nursing
ISBN:9781305143531
Author:CURREN
Publisher:Cengage
Text book image
BIOLOGY:CONCEPTS+APPL.(LOOSELEAF)
Biology
ISBN:9781305967359
Author:STARR
Publisher:CENGAGE L