PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 9FP
To determine
The tangential and normal components of reaction of pin
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 1.8-kg uniform bar rotates in the vertical plane about the pin at O.When the bar is in the position shown, its angular velocity is 4 rad/s, clockwise. For this position, find (a) the angular acceleration of the bar; and (b) the magnitude of the pin reaction at O.
A constant couple moment M is acted on the drum O to pull the spool C up the incline. Both drum
O and spool C can be treated as uniform disk. If spool C is rolling without slipping, determine the
angular acceleration of the drum and the cord force.
R
R
(0 M
4 The uniform 16.1-lb slender bar is hinged about a
horizontal axis through O and released from rest in
the horizontal position. Determine the distance b
from the mass center to O which will result in an ini-
tial angular acceleration of 16.1 rad/sec?, and find
the force R on the bar at O just after release.
G
12"
12"
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. The uniform bar of mass 5-kg and a length of 0.5 m is balanced in the vertical position when a horizontal force of P = 20 N is applied to the roller at A. Determine the bar's initial angular acceleration and the acceleration of its top point B. Barrow_forwardA constant couple moment Mis acted on the drum O to pull the spool C up the incline. Both drum O and spool C can be treated as uniform disk. If spool C is rolling without slipping, determine the angular acceleration of the drum and the cord force. R 6 00 dr Marrow_forwardThe small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.arrow_forward
- 0.4 m The 8-kg crank OA, with mass center at G and radius of gyration about O of 0.22 m, is connected to the 12-kg uniform slender bar AB. A constant torque M is applied to OA so that when OA swings through the vertical position, the speed of B is 8 m/s. Determine the magnitude of the torque M and the angular velocity of OA when it reaches the vertical position. G 0.18 m M = 1.0 marrow_forwardThe concrete block weighing 644 lb is elevated by the hoisting mech- anism shown, where the cables are securely wrapped around the re- spective drums. The drums, which are fastened together and turn as a single unit about their mass center at 0, have a combined weight of 322 lb and a radius of gyration about O of 18 in. If a constant tension P = 400 lb is maintained by the power unit at A, determine the vertical acceleration of the block and the resultant force on the bearing at O. Solve using; 24" 12" P = 400 lb (a) Two free body diagrams for concrete block and drum. W = 322 lb ko = 18" (b) One system block diagram ( concrete block and drum as one system). 45° A 644 lbarrow_forwardthe crank AB is made to rotate with a constant angular velocity of Q rpm clockwise with no force applied to the face of the piston. (a) determine the velocity of the position P (b) determine the angular velocity and acceleration of the connecting rod BD (c) if the piston mass is m, determine the forces exerted on the connecting rod at B and D (neglect the effect of the weight of the rod)arrow_forward
- The 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. Marrow_forwardPlease solve this question in dynamicsarrow_forwardThe assembly consisting of a uniform slender bar (mass = 1.5 kg and L = 0.49 m) and a rigidly attached uniform disk (mass = 6.8 kg) is freely pinned to point O on the collar that in turn slides on the fixed horizontal guide. The assembly is at rest when the collar is given a sudden acceleration a = 3.4 m/s² to the left as shown. Determine the initial angular acceleration a of the assembly. The angular acceleration is positive if counterclockwise, negative if clockwise. 6.8 kg Answer: a = i 1.5 kg LA rad/s²arrow_forward
- The center O of the thin ring of mass m is given an angi velocity of an. If the ring rolls without slipping, determ its angular velocity after it has traveled a distance of s do the plane. Neglect its thickness.arrow_forwardThe 110-kg wheel has a radius of gyration about its center O of ko = 220 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 63 N•m, it starts rolling from rest. Determine the wheel's angular velocity W (in rad/s) after 6.0 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². T M Your Answer: Answerarrow_forwardThe 250-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 64 N.m, it starts rolling from rest. Determine the total angular impulse L (in N.m.s) about the wheel's IC after 7.3 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². M Your Answer: Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license