PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 60P
The tent rod has a mass of 2 kg/m. If it is released from rest in the position shown, determine its initial angular acceleration and the horizontal and vertical components of reaction at A.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2) The shown spool has a mass of 450 kg and a
radius of gyration k. =1.2m. It rests on the
surface of conveyer belt for which the coefficient of
friction u = 0.5. If the conveyer accelerates
at 1.2m/ S²and the spools rolls without slipping,
determine the tension in the wire and the angular
acceleration of the spool
0.8 m
1.6 m
ac
The flat circular disk rotates about a vertical axis through O with a slowly increasing angular velocity w. Prior to rotation, each of the
0.52-kg sliding blocks has the position x = 28 mm with no force in its attached spring. Each spring has a stiffness of 430 N/m.
Determine the value of x for each spring for a steady speed of 279 rev/min. Also calculate the normal force N exerted by the side of the
slot on the block. The force N is positive if it pushes from the side labeled A. Neglect any friction between the blocks and the slots, and
neglect the mass of the springs. (Hint: Sum forces along and normal to the slot.)
Answers:
X =
wwwwwwww
N =
i
i
-74-74-
mm
mm
mm
N
The small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. The uniform slender rod has a mass m= 20 kg and length L = 0.5 m. As the frame accelerates forward the rod is held in the position shown at a steady angle 0 = tan (3/4) by the stop at A. Determine the magnitude of the reaction force at stop A if the acceleration is a = 6 m/s. A = a L. Aarrow_forwardThe assembly has a mass of 4 Mg and is hoisted using the winch at B. Determine the greatest acceleration of the assembly so that the compressive force in the hydraulic cylinder supporting the boom does not exceed 180 kN. What is the tension in the supporting cable? The boom has a mass of 2 Mg and mass center at Garrow_forward0.8 m The shown spool has a mass of 450 kg and a radius of gyration k, =1.2m. It rests on the surface of conveyer belt for which the coefficient of friction u =0.5. If the conveyer accelerates at1.2m / Sand the spools rolls without slipping, determine the tension in the wire and the angular acceleration of the spool - 1.6 marrow_forward
- The T-shaped body of total mass m = 6.5 kg is constructed of uniform rod. If it is released from rest while in the position shown, determine the vertical force reaction at O as it passes the vertical position (124° after release). The distance b is 1.04 m.arrow_forwardThe system consists of the two smooth spheres, each weighing 8 lb and connected by a light spring, and the two bars of negligible weight hinged freely at their ends and hanging in the vertical plane. The spheres are confined to slide in the smooth horizontal guide. If a horizontal force F = 23 lb is applied to the one bar at the position shown, what is the acceleration of the center C of the spring? Does the result depend on the dimension b? Assume d = 17 in. Answer: a = i b F ft/sec²arrow_forwardwinding drum that operates the elevator. If the elevator has a mass of 900 kg, the counterweight C has a mass of 200 kg, and sam the winding drum has a mass of 600 kg and radius of gyration about its axis of k = 0,6 m, determine the speed of the elevator after it rises 5 m starting from rest. Neglect the mass of the pulleysarrow_forward
- The pendulum has a mass of 7.2 kg, a centre of gravity at G, and a radius of gyration of 0.31 m about the fixed pin support at O. The pendulum is released from rest in the position where 0 = 43 •. What is the magnitude of the pendulum's angular acceleration (in rad/s?) at this instant? Take = OG = 0.24 m. The motion occurs in a vertical plane and friction is negligible. f = OG Garrow_forwardThe slender 12-kg bar has a clockwise angular velocity of w = 2 radis when it is in the position shown. Determine its angular acceleration and the normal reactions of the smooth surface A and B at this instant. 3 marrow_forwardThe uniform 99-lb log is supported by the two cables and used as a battering ram. If the log is released from rest in the position shown, calculate the initial tension induced in each cable immediately after release and the corresponding angular acceleration a of the cables. Assume a = 3.9 ft, b = 2.9 ft, c = 1.3 ft, e = 61°. a a C Answers: TA = i 21.6 Ib TB = i 64.9 Ib a = 4.00 rad/sec?arrow_forward
- At the instant shown both rods of negligible mass swing with a counterclockwise angular velocity of w = while the 50-kg bar is subjected to the 100-N horizontal force. Determine the tension developed in the rods and the angular acceleration of the rods at this instant. 5 rad/s,arrow_forwardPlease solve this question in dynamicsarrow_forwardThe wheel has mass m and centroidal radius of gyration (k bar) and rolls without slipping up the incline under action force P. The force is applied to the end of a cord which is wrapped securely around the inner hub of the wheel as shown. Determine the speed Vo of the wheel center O after the wheel center has traveled a distance d up the incline. The wheel is at rest when the force P is first applied.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY