PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 57P
The 10-kg wheel has a radius of gyration kA = 200 mm. If the wheel is subjected to a moment M = (5t) N · m, where t is in seconds, determine its angular velocity when t = 3 s starting from rest. Also, compute the reactions which the fixed pin A exerts on the wheel during the motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 27-kg wheel has a radius of gyration about its center O of ko = 260 mm, and
radius r = 0.5 m. When the wheel is subjected to the constant force F = 354 N,
applied to the wheel's center axle at an angle = 6°, it starts rolling from rest.
Determine the wheel's angular velocity W (in rad/s) after 3.2 seconds if the wheel
has been rolling without slipping. Please pay attention: the numbers may change
since they are randomized. Your answer must include 1 place after the decimal point.
Take g = 9.81 m/s².
F
0
Your Answer:
Answer
The 21-kg wheel has a radius of gyration about its center O of ko =260 mm, and
radius r = 0.5 m. When the wheel is subjected to the constant force F = 247 N,
applied to the wheel's center axle at an angle = 6°, it starts rolling from rest.
Determine the wheel's angular velocity W (in rad/s) after 4.0 seconds if the wheel
has been rolling without slipping. Please pay attention: the numbers may change
since they are randomized. Your answer must include 1 place after the decimal point.
Take g = 9.81 m/s².
Your Answer:
G
Answer
r
0
F
The 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the
couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of
kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are
randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?.
M
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 110-kg wheel has a radius of gyration about its center O of ko = 220 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 63 N•m, it starts rolling from rest. Determine the wheel's angular velocity W (in rad/s) after 6.0 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². T M Your Answer: Answerarrow_forwardThe 20-kg wheel has a radius of gyration about its center O of ko = 300mm as shown in Fig.5. When the wheel is subjected to the couple moment, it slips as it rolls. Determine the angular acceleration of the wheel and the acceleration of the wheel's mass center O. The coefficient of kinetic friction between the wheel and the plane is ur = 0.5. 0.4 m M = 100 N-marrow_forwardwinding drum that operates the elevator. If the elevator has a mass of 900 kg, the counterweight C has a mass of 200 kg, and sam the winding drum has a mass of 600 kg and radius of gyration about its axis of k = 0,6 m, determine the speed of the elevator after it rises 5 m starting from rest. Neglect the mass of the pulleysarrow_forward
- The 16-kg wheel has a radius of gyration about its center O of ko = 220 mm, and radius r = 0.4 m. When the wheel is subjected to the couple moment M = 98 N•m, it slips as it rolls. Determine the angular acceleration of the wheel (in rad/s²). The coefficient of kinetic friction between the wheel and the plane is μ = 0.27. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answer 1arrow_forwardThe 30-kg wheel has a radius of gyration about its center O of ko = 240 mm, and radius r = 0.5 m. When the wheel is subjected to the constant force F = 388 N, applied to the wheel's center axle at an angle = 6°, it starts rolling from rest. Determine the total angular impulse L (in N•m.s) about the wheel's IC after 3.7 seconds if the wheel has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point. Take g = 9.81 m/s². Your Answer: G Answer Ө Farrow_forwardThe 10 kg wheel has a radius of gyration about its center O of ko = 300 mm. When the wheel is subjected to the couple moment, it slips as it rolls. Determine the angular acceleration of the wheel and the acceleration of the wheel's center O. The coefficient of kinetic friction between the wheel and the plane is = 0.2. (Figure 1) Figure M 100 N m < 1 of 1 0.4 m Part A Determine the angular acceleration of the wheel. Express your answer to three significant figures and include the appropriate units. α = Submit ■ Part B ao = μÅ X Incorrect; Try Again Value Submit Previous Answers Request Answer Determine the acceleration of the wheel's center O. Express your answer to three significant figures and include the appropriate units. μA Units Value X Incorrect; Try Again Units ? Previous Answers Request Answer ? Units input for part Barrow_forward
- The uniform 50-kg sphere has radius r = 0.2 m and is welded to the center of the uniform 30-kg shaft as shown. When a constant couple moment M is applied to the shaft, its angular velocity reaches 74 rad/s after 4 s. Determine the magnitude of the moment M. Write your answer in N.m but do not write the units. M R= 0.1 m Taylor e m Te am Answer: Answerarrow_forwardThe double pulley consists of two wheels which are attached to one another and turn at the same rate. The pulley has a mass of 32 kg and a radius of gyration k_O = 260 mm. The men A and B have a mass of 60 kg and 70 kg, respectively. Assume they do not move relative to the rope during the motion. Neglect the mass of the rope. If two men A and B grab the suspended ropes and step off the ledges at the same time, determine the speed of man A in 4.2 s starting from rest. vA= ??? If two men A and B grab the suspended ropes and step off the ledges at the same time, determine the speed of man B in 4.2 s starting from rest. vB= ???arrow_forwardThe 200-kg spool has a radius of gyration about its mass center of kg = 300 mm. If the couple moment is applied to the spool and the coefficient of kinetic friction between the spool and the ground is μ = 0.2, determine the angular acceleration of the spool, the acceleration of G and the tension in the cable. 0.4 m B 0.6 m M = 450 N-marrow_forward
- The uniform 99-lb log is supported by the two cables and used as a battering ram. If the log is released from rest in the position shown, calculate the initial tension induced in each cable immediately after release and the corresponding angular acceleration a of the cables. Assume a = 3.9 ft, b = 2.9 ft, c = 1.3 ft, e = 61°. a a C Answers: TA = i 21.6 Ib TB = i 64.9 Ib a = 4.00 rad/sec?arrow_forwardEach of the two links has a mass of 1.5 kg and a centroidal radius of gyration of 55 mm. The slider at B has a mass of 3.4 kg and moves freely in the vertical guide. The spring has a stiffness of 5.9 kN/m. If a constant torque M = 14.0 N-m is applied to link OA through its shaft at O starting from the rest position at = 45°, determine the angular velocity of OA when 0 = 0. 40 mm 330 mm O Answer: w= i 165 mm 165 mm rad/sarrow_forward3. The 300-kg gear has a radius of gyration about its center of mass O of ko = 400 mm. If the wheel is subjected to a couple moment of M= 300 N-m, determine its angular velocity 6 s after it starts from rest and no slipping occurs. Also determine the friction force that the ground applies to the wheel. Solve the problem using Impulse and Momentum. M 300 Nm 0.6 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License