PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 13FP
The uniform 60-kg slender bar is initially at rest on a smooth horizontal plane when the forces are applied. Determine the acceleration of the bar’s mass center and the angular acceleration of the bar at this instant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.
The wheel has mass m and centroidal radius of gyration (k bar) and rolls without slipping up the incline under action force P. The force is applied to the end of a cord which is wrapped securely around the inner hub of the wheel as shown. Determine the speed Vo of the wheel center O after the wheel center has traveled a distance d up the incline. The wheel is at rest when the force P is first applied.
The 10-kg wheel is rolling under the constant moment of M = 97 N-m. The wheel has radius r= 0.59 m, has mass center at point G, and
the radius of gyration is kg = 0.27 m. The coefficients of friction between the wheel and the ground is ls = 0.25 and Hk = 0.14. If the
wheel rolls while slipping, determine the magnitude of the linear acceleration of point G (in m/s2). Please pay attention: the numbers
may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?.
M
G
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. The uniform bar of mass 5-kg and a length of 0.5 m is balanced in the vertical position when a horizontal force of P = 20 N is applied to the roller at A. Determine the bar's initial angular acceleration and the acceleration of its top point B. Barrow_forwardThe 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. Marrow_forwardThe wheel has a mass of 25 kg and a radius of gyration kb = 0.15m. It is originally spinning at @=40 rad/s. If it is placed on the ground, for which the coefficient of kinetic friction is uc = 0.5, determine the time required for the motion to stop. What are the horizontal and vertical components of reaction which the pin at A exerts on AB during this time? Neglect the mass of -0.4 m AB. 0.2 m- B 0.3 m Iarrow_forward
- The spring is uncompressed when the uniform slender bar is in the vertical position shown. Determine the initial angular acceleration a of the bar when it is released from rest in a position where the bar has been rotated clockwise 29° from the position shown. Neglect any sag of the spring, whose mass is negligible. The angular acceleration is positive if counterclockwise and negative if clockwise. The mass m of the bar is 25 kg, the length / is 275 mm and the spring constant k is 640 N/m. A m 4 G B Answer: a = i rad/s? 1/1arrow_forwardThe two balls are attached to the light rigid rod, which is suspended by a cord from the support above it. If the balls and rod, initially at rest, are struck with the force F = 19.0 lb, calculate the magnitudes of the corresponding accelerationā of the mass center and the rate @ at which the angular velocity of the bar is changing. 7.4" 3.8" 5.8" 14.87 lb 11.3" 1.78 Ib Answers: ft/sec2 i rad/sec2arrow_forwardThe wheel has mass m 6.2 kg and a centroidal radius of gyration 685 mm and rolls without slipping up the incline under the action of a force P. The force is applied to the end of a cord which is wrapped securely around the inner hub of the wheel as shown. Determine the speed vo Oof the wheel center O after the wheel center has traveled a distance d 3.7 m up the incline. The wheel is at rest when 975 mm and ri 370 mm and the angle 0 = 25° the force P 54 N is first applied. The distances ro m, k P m/s Answer: Vo = Oarrow_forward
- The figure shows the cross section of a uniform 239-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 16.6 lb per foot of stretch and is undeformed when 8-0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: @max 4.2¹ rad/sec at 8-iarrow_forwardThe uniform 2-kg slender bar AB is mounted on a vertical shaft at C.A constant couple of 9 N-m is applied to the bar. Calculate the angular acceleration of the bar and the magnitude of the horizontal reaction at C at the instant when the angular velocity of the bar is 6 rad/s.arrow_forwardH3arrow_forward
- 2) The shown spool has a mass of 450 kg and a radius of gyration k. =1.2m. It rests on the surface of conveyer belt for which the coefficient of friction u = 0.5. If the conveyer accelerates at 1.2m/ S²and the spools rolls without slipping, determine the tension in the wire and the angular acceleration of the spool 0.8 m 1.6 m acarrow_forwardPravinbhaiarrow_forwardThe 29-kg spool of outer radius ro=530 mm has a centroidal radius of gyration k=355 mm and a central shaft of radius ri=215 mm. The spool is at rest on the incline when a tension T=204 N is applied to the end of a cable which is wrapped securely around the central shaft as shown. Determine the acceleration aaa of the spool center GGG and the friction force FFF acting at the interface of the spool and incline. The friction coefficients there are μs=0.28 and μk=0.17. The tension T is applied parallel to the incline and the angle θ=16. The acceleration aaa and the force F are both positive if up the incline, negative if down.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY