PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 8RP
To determine
The backspin
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The flat circular disk rotates about a vertical axis through O with a slowly increasing angular velocity w. Prior to rotation, each of the
0.52-kg sliding blocks has the position x = 28 mm with no force in its attached spring. Each spring has a stiffness of 430 N/m.
Determine the value of x for each spring for a steady speed of 279 rev/min. Also calculate the normal force N exerted by the side of the
slot on the block. The force N is positive if it pushes from the side labeled A. Neglect any friction between the blocks and the slots, and
neglect the mass of the springs. (Hint: Sum forces along and normal to the slot.)
Answers:
X =
wwwwwwww
N =
i
i
-74-74-
mm
mm
mm
N
The spring-mounted 0.62-kg collar A oscillates along the horizontal rod, which is rotating at the constant
angular rate ở = 6.3 rad/s. At a certain instant, ris increasing at the rate of 630 mm/s. If the coefficient of
kinetic friction between the collar and the rod is 0.46, calculate the friction force F exerted by the rod on
the collar at this instant.
Vertical
Answer: F = i
N
The 0.6-lb particle is guided along the circular path using the
slotted arm guide. Motion occurs in the horizontal plane with
negligible friction. Note that the circular part of the slot has the
radius equal to 0.5 ft, and the radial position, r, is measured from
the hinge and the angle is measured in the counter-clockwise
direction. If the arm has an angular velocity = 4 rad/sec and
an angular acceleration 6 - 8 rad/sec² at the instant when 0 =
30°, determine the force of the arm guide on the particle at the
instant. Present your answer in lb using 3 significant figures.
0.5 ft
0
0.5 ft.
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The spring-held follower AB has a weight of 0.75 lb and moves back and forth as its end rolls on the contoured surface of the cam, where r=0.2 ft and z = (0.1sine) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force at the end A of the follower when e=90°. In this position the spring is compressed 0.4 ft. Neglect friction at the bearing C. z = 0.1 sin 20 0.2 ft e = 6 rad/s k = 12 lb/ft Fs FA- Tarrow_forwardThe spring-mounted 0.82-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate À = 9.1 rad/s. At a certain instant, r is increasing at the rate of 850 mm/s. If the coefficient of kinetic friction between the collar and the rod is 0.56, calculate the friction force F exerted by the rod on the collar at this instant. Vertical 0 Answer: F= i Attempts: 0 of 3 used Submit Answer eTextbook and Media Save for Later Narrow_forwardThe particle of mass m = 2.1 kg is attached to the light rigid rod of length L = 0.91 m, and the assembly rotates about a horizontal axis through O with a constant angular velocity θ˙θ˙ = ω = 2.9 rad/s. Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression. Determine the force T in the rod when θ = 28°. The force T is positive if in tension, negative if in compression.arrow_forward
- The spring-mounted 0.92-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate 0 = 6.5 rad/s. At a certain instant, r is increasing at the rate of 850 mm/s. If the coefficient of kinetic friction between the collar and the rod is 0.52, calculate the friction force F exerted by the rod on the collar at this instant. Answer: Fi Vertical Narrow_forwardThe small block B is attached to the vertex A of the right circular cone using a light cord. The cone is rotating at a constant angular velocity about the vertical z-axis such that the block attains a speed of 0.6 m/sec. If the mass of the block is 0.3 kg, determine the tension in the cord by neglecting friction and the size of the block. Present your answer in Newtons using 3 significant figures. 200 mm B 300 mm A 400 mmarrow_forwardThe uniform rectangular block with the given dimensions is dropped from rest from the position shown. Corner A strikes the ledge at B and becomes latched to it. Determine the angular velocity w of the block immediately after it becomes attached to B. Also find the percentage n of energy loss during the corner attachment. Use the values h = 340 mm, b = 520 mm, and c = 810 mm. The angular velocity is positive if counterclockwise, negative if clockwise. Answers: ω- rad/s n = %arrow_forward
- The slotted arm OA rotates about a fixed axis through O. At the instant under consideration, θθ = 34°, θ˙θ˙ = 43 deg/s, and θ¨θ¨ = 10 deg/s2. Determine the magnited of the force F applied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.88 m. The motion occurs in a vertical plane.arrow_forwardThe velocity of the 8-kg cylinder is 0.3 m∕s at a certain instant. The speed v after dropping an additional 1.5 m is 2.5 m/s. The mass of the grooved drum is 12 kg, its centroidal radius of gyration is k = 210 mm, and the radius of its groove is ri = 200 mm. The frictional moment at O is a constant 3 N∙m. Find the frictional force.arrow_forwardA mechanical engineering student has been practicing his yoyo tricks because he has too much free time. For one trick, he spins the yoyo such that it contacts the ground and rolls forward, emulating someone walking their dog. If the yoyo has a radius of gyration 0.01 m and a mass of m = 0.2 kg, determine the acceleration and angular acceleration of the yoyo when the tension in the string is found to be T = 0.3 N. Assume the string is at its full extent and does not roll up as the yoyo rolls. Assume there is also no friction where the string slips around the yoyo's inner axle. The coefficients of static and kinetic friction are found to be 0.25 and 0.1 respectively. The angle = 40 degrees and the radius of the yoyo is r = 0.04 m. Take the initial angular velocity of the yoyo to be w = 6 - CW rad 8 Does the yoyo slip? Ꮎ aG₂ Slips Does not Slip What is the acceleration of the yoyo's center of gravity (G) and angular acceleration (a)? Round all answers to three significant figures. a (22 k…arrow_forward
- 2) The shown spool has a mass of 450 kg and a radius of gyration k. =1.2m. It rests on the surface of conveyer belt for which the coefficient of friction u = 0.5. If the conveyer accelerates at 1.2m/ S²and the spools rolls without slipping, determine the tension in the wire and the angular acceleration of the spool 0.8 m 1.6 m acarrow_forwardThe 15-kg bar is released from rest while in the position shown and its end rollers travel in the vertical-plane slot shown. If the speed of roller A is 3.23 m/s as it passes point C, determine the work done by friction on the system over this portion of the motion. The bar has a length /= 775 mm. Assume 8 = 34° 0 Barrow_forwardThe homogeneous, solid cylinder with mass m = 4.8 kg and radius r = 0.24 m rolls along the inclined surface without slipping. If the initial angular velocity is w, = 2 rad/s (counterclockwise), and after a certain time lapse the angular velocity is w2 = 2.2 rad/s (clockwise), determine the magnitude of the linear impulse due to the frictional force during this time period. Let 0 = 46°.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License