PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 118P
The 500-lb beam is supported at A and B when it is subjected to a force of 1000 lb as shown. If the pin support at A suddenly fails, determine the beam’s initial angular acceleration and me force of the roller support on the beam. For the calculation, assume that the beam is a slender rod so that its thickness can be neglected.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The uniform 24-m robotic arm OB weighs 300 kg and is hinged at its lower end to a fixed
support at O. If the actuator C develops a starting torque of 1300 N· m, calculate the total force
supported by the pin at O as the arm begins to lift off its support at B. Also find the
corresponding angular acceleration a of the robotic link. The cable at A is horizontal, and the
mass of the pulleys and the actuator is negligible. (see Figure 2)
1200 mm
30°
16 m
Figure 2.
8 m
B
1000 lb
-8 ft
+2ft
A beam that weighs 300 lbs is supported by a roller and pin B and A respectively while being subjected to
a force of 1000 lbs. If the pin at A is suddenly removed, determine the beams angular acceleration, the
force exerted by support B and the horizontal acceleration just after A is removed. Assume the beam is a
slender rod of negligible thickness.
Please don't use angle measurements when solving. Use the 3-4-5 triangle to solve, if that makes sense.
Thank you!
Choutranco
impgo tout
The figure shows the cross section of a uniform 239-lb ventilator door hinged about its upper horizontal edge at O. The door is
controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 16.6 lb per foot of stretch
and is undeformed when 8-0. If the door is released from rest in the horizontal position, determine the maximum angular velocity
reached by the door and the corresponding angle 0.
Answer: @max
4.2¹
rad/sec at 8-i
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The force F of 250 N is applied because a block with a mass of 20 kg and a radius of inertia of 160 mm as shown in the figure. This force lifts the weight B of 10 kg. Calculate the pulley angular acceleration and the normal acceleration of weight B, tension in the cable and reaction in the pulley bearing.arrow_forwardYour answer is partially correct. The figure shows the cross section of a uniform 174-lb ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable which passes over the small pulley at A. The spring has a stiffness of 12.7 lb per foot of stretch and is undeformed when = 0. If the door is released from rest in the horizontal position, determine the maximum angular velocity reached by the door and the corresponding angle 0. Answer: Wmax = www 4.2' 0.636 rad/sec at 0 = 58.49 Oarrow_forwardA 15-kg uniform disk is placed in contact with the ground and a constant couple moment M = 32 N.m is applied to it as shown. The weight of link AB is negligible. If the coefficient of kinetic friction at D is 0.3, find the angular acceleration of the disk. write the answer in rad/s? but do not write the units. R = 0.25 m A Taylor Answer:arrow_forward
- The 214-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 94 N•m, it starts rolling from rest. Determine the average friction force that the ground applies to the wheel if it has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s². M Your Answer: Answer unitsarrow_forwardThe 186-kg wheel has a radius of gyration about its center O of ko = 300 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 92 N.m, it starts rolling from rest. Determine the average friction force that the ground applies to the wheel if it has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s². M Your Answer: units Answerarrow_forwardQ. The upper and lower arms of Porter governor are 0.25 m each and are pivoted 30 mm from the axis of rotation. The radius of rotation Is 130 mm. The mass of the ball and sleeve are 3 kg and 38 kg respectively. Find the effort and power of the governor.arrow_forward
- 2. Consider the 5-1lb bar with length of 2½ feet and width of 2 inches. Small frictionless bearings are mounted to the ends, constraining the motion of the bar to the horizontal x and y slots. The bar starts at rest at positioned at 0= 45°. If an angular acceleration of 3 rad/s² is desired, what moment M must be applied to the bar? What are the reaction forces at A and B at that instant? Additional question: Does the width of the bar matter, or is it appropriate to consider the bar as a slender rod? Consider errors of less than 2% negligible.arrow_forwardThe uniform 99-lb log is supported by the two cables and used as a battering ram. If the log is released from rest in the position shown, calculate the initial tension induced in each cable immediately after release and the corresponding angular acceleration a of the cables. Assume a = 3.9 ft, b = 2.9 ft, c = 1.3 ft, e = 61°. a a C Answers: TA = i 21.6 Ib TB = i 64.9 Ib a = 4.00 rad/sec?arrow_forwardThe crank OA rotates in the vertical plane with a constant clockwise angular velocity Wo of 2.3 rad/s. For the position where OA is horizontal, calculate the force under the light roller B of the 17.4-kg slender bar AB. 0.30 m 000 -7 0.65 m B 0.86 m = Answer: FB i Narrow_forward
- block C weighs 200lb is lifted by hoisting mechanism. the hoist is wrapped around compound drum B. drum b is rotating as a single unit and weighs 300 lbs. K(bar) is 4ft. a hoist tension (P) is rated 1.0 kips. And its power is being maintained by the power in Motor A. Determine the vertical acceleration of the block C and the resultant force on the bearing at O.arrow_forwardThe frame is made from uniform rod which has a mass p per unit length. A smooth recessed slot constrains the small rollers at A and B to travel horizontally. Force P is applied to the frame through a cable attached to an adjustable collar C. Determine the magnitudes and directions of the normal forces which act on the rollers if (a) h = 0.25L, (b) h = 0.50L, and (c) h = 0.81L. The forces will be positive if up, negative if down. Evaluate your results for p = 2.5 kg/m, L = 510 mm, and P = 43 N. What is the acceleration of the frame in each case? Answers: (a) (b) L (c) h= 0.25L: h = 0.50L: h = 0.81L: L A A A = B i i i h P N. N. N₁ B i i i N. N. N. i i i m/s m/s m/sarrow_forwardThe crank OA rotates in the vertical plane with a constant clockwise angular velocity wo of 2.0 rad/s. For the position where OA is horizontal, calculate the force under the light roller B of the 13.9-kg slender bar AB. 0.30 m 0.86 m 0.64 m Answer: FB N iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY