PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 92P
The uniform 150-lb beam is initially at rest when the forces are applied to the cables Determine the magnitude of the acceleration of the mass center and the angular acceleration of the beam at this instant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. The uniform bar of mass 5-kg and a length of 0.5 m is balanced in the vertical position when a
horizontal force of P = 20 N is applied to the roller at A. Determine the bar's initial angular
acceleration and the acceleration of its top point B.
B
The spring is uncompressed when the uniform slender bar is in the vertical position shown. Determine the initial angular
acceleration a of the bar when it is released from rest in a position where the bar has been rotated clockwise 29° from the position
shown. Neglect any sag of the spring, whose mass is negligible. The angular acceleration is positive if counterclockwise and negative
if clockwise. The mass m of the bar is 25 kg, the length / is 275 mm and the spring constant k is 640 N/m.
A
m
4
G
B
Answer: a =
i
rad/s?
1/1
The semicircular disk of mass m = 1.5 kg and radius r = 615 mm is released from rest at θ = 0 and rotates freely in the vertical plane about its fixed bearing at O. Calculate the n- and t-components of the force F on the bearing when θ = 65°. The components Fn and Ft are positive if in the positive n- and t-directions respectively, negative if opposite.
Chapter 17 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 17 - Determine the moment of inertia Iy for the slender...Ch. 17 - The solid cylinder has an outer radius R1 height...Ch. 17 - Determine the moment of inertia of the thin ring...Ch. 17 - Prob. 9PCh. 17 - The pendulum consists of a 4-kg circular plate and...Ch. 17 - Prob. 12PCh. 17 - The wheel consists of a thin ring having a mass of...Ch. 17 - If the large ring, small ring and each of the...Ch. 17 - Determine the moment of inertia about an axis...Ch. 17 - Prob. 16P
Ch. 17 - Determine the location y of the center of mass G...Ch. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Determine the moment of inertia of the wheel about...Ch. 17 - The pendulum consists of the 3-kg slender rod and...Ch. 17 - Prob. 22PCh. 17 - Determine the moment of inertia of the overhung...Ch. 17 - Prob. 1FPCh. 17 - Prob. 2FPCh. 17 - Prob. 3FPCh. 17 - Prob. 4FPCh. 17 - At the instant shown both rods of negligible mass...Ch. 17 - Prob. 6FPCh. 17 - The door has a weight of 200 lb and a center of...Ch. 17 - The door has a weight or 200 lb and a center of...Ch. 17 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17 - The sports car has a weight of 4500 lb and center...Ch. 17 - The bar has a weight per length w and is supported...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17 - Prob. 44PCh. 17 - If the carts mass is 30 kg and it is subjected to...Ch. 17 - Prob. 50PCh. 17 - Prob. 53PCh. 17 - Prob. 54PCh. 17 - The 100-kg wheel has a radius of gyration about...Ch. 17 - Prob. 8FPCh. 17 - Prob. 9FPCh. 17 - Prob. 10FPCh. 17 - Prob. 11FPCh. 17 - Prob. 12FPCh. 17 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17 - The uniform 24-kg plate is released from rest at...Ch. 17 - The uniform slender rod has a mass m. If it is...Ch. 17 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17 - Disk A has a weight of 5 lb and disk B has a...Ch. 17 - Prob. 66PCh. 17 - The reel of cable has a mass of 400 kg and a...Ch. 17 - Prob. 72PCh. 17 - Cable is unwound from a spool supported on small...Ch. 17 - The 5-kg cylinder is initially at rest when it is...Ch. 17 - Prob. 76PCh. 17 - Disk D turns with a constant clockwise angular...Ch. 17 - Prob. 78PCh. 17 - Prob. 81PCh. 17 - Prob. 85PCh. 17 - The Catherine wheel is a firework that consists of...Ch. 17 - The uniform 60-kg slender bar is initially at rest...Ch. 17 - Prob. 14FPCh. 17 - Prob. 15FPCh. 17 - The 20- kg sphere rolls down the inclined plane...Ch. 17 - The 200-kg spool has a radius of gyration about...Ch. 17 - The 12-kg slender rod is pinned to a small roller...Ch. 17 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17 - The uniform 150-lb beam is initially at rest when...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17 - The spool has a mass of 100 kg and a radius of...Ch. 17 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17 - If the coefficient of static friction at C is s =...Ch. 17 - If P = 30 lb, determine the angular acceleration...Ch. 17 - If the coefficient of static friction between the...Ch. 17 - The semicircular disk having a mass of 10 leg is...Ch. 17 - The circular concrete culvert rols with an angular...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform disk of mass m is rotating with an...Ch. 17 - The uniform beam has a weight W. If it is...Ch. 17 - The 500-lb beam is supported at A and B when it is...Ch. 17 - Prob. 1RPCh. 17 - Prob. 2RPCh. 17 - Prob. 3RPCh. 17 - Prob. 4RPCh. 17 - Prob. 5RPCh. 17 - Prob. 6RPCh. 17 - Prob. 7RPCh. 17 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. Marrow_forwardThe flat circular disk rotates about a vertical axis through O with a slowly increasing angular velocity w. Prior to rotation, each of the 0.52-kg sliding blocks has the position x = 28 mm with no force in its attached spring. Each spring has a stiffness of 430 N/m. Determine the value of x for each spring for a steady speed of 279 rev/min. Also calculate the normal force N exerted by the side of the slot on the block. The force N is positive if it pushes from the side labeled A. Neglect any friction between the blocks and the slots, and neglect the mass of the springs. (Hint: Sum forces along and normal to the slot.) Answers: X = wwwwwwww N = i i -74-74- mm mm mm Narrow_forwardH3arrow_forward
- The uniform 50-kg sphere has radius r = 0.2 m and is welded to the center of the uniform 30-kg shaft as shown. When a constant couple moment M is applied to the shaft, its angular velocity reaches 74 rad/s after 4 s. Determine the magnitude of the moment M. Write your answer in N.m but do not write the units. M R= 0.1 m Taylor e m Te am Answer: Answerarrow_forward6. The uniform ring of mass m = 10 kg and radius r= 0.5 m is hinged at O and can rotate freely in the vertical plane. If the ring is released with a clockwise angular velocity o = 4 rad/s from the position shown where OC is horizontal, determine the magnitude of the reaction at pin O the instant the disk is released. toarrow_forwardAt the instant shown both rods of negligible mass swing with a counterclockwise angular velocity of w = while the 50-kg bar is subjected to the 100-N horizontal force. Determine the tension developed in the rods and the angular acceleration of the rods at this instant. 5 rad/s,arrow_forward
- The concrete block weighing 644 lb is elevated by the hoisting mech- anism shown, where the cables are securely wrapped around the re- spective drums. The drums, which are fastened together and turn as a single unit about their mass center at 0, have a combined weight of 322 lb and a radius of gyration about O of 18 in. If a constant tension P = 400 lb is maintained by the power unit at A, determine the vertical acceleration of the block and the resultant force on the bearing at O. Solve using; 24" 12" P = 400 lb (a) Two free body diagrams for concrete block and drum. W = 322 lb ko = 18" (b) One system block diagram ( concrete block and drum as one system). 45° A 644 lbarrow_forwardThe uniform 179-kg beam is freely hinged about its upper end A and is initially at rest in the vertical position with θ = 0. Determine the initial angular acceleration α (positive if counterclockwise, negative if clockwise) of the beam and the magnitude F_A of the force supported by the pin at A due to the application of a force P = 635 N on the attached cable.arrow_forwardThe shown body is composed of a disk with mass 10 kg and a slender bar with mass 5kg which is released from rest form the 4m 1m G horizontal condition (it is released when = 0). calculate the angular velocity and angular acceleration and the forces at the hinge point (Point O) when 0 = 60 deg. Length of bar is 4m and the radius of disk is 1m.arrow_forward
- A mechanical engineering student has been practicing his yoyo tricks because he has too much free time. For one trick, he spins the yoyo such that it contacts the ground and rolls forward, emulating someone walking their dog. If the yoyo has a radius of gyration 0.01 m and a mass of m = 0.2 kg, determine the acceleration and angular acceleration of the yoyo when the tension in the string is found to be T = 0.3 N. Assume the string is at its full extent and does not roll up as the yoyo rolls. Assume there is also no friction where the string slips around the yoyo's inner axle. The coefficients of static and kinetic friction are found to be 0.25 and 0.1 respectively. The angle = 40 degrees and the radius of the yoyo is r = 0.04 m. Take the initial angular velocity of the yoyo to be w = 6 - CW rad 8 Does the yoyo slip? Ꮎ aG₂ Slips Does not Slip What is the acceleration of the yoyo's center of gravity (G) and angular acceleration (a)? Round all answers to three significant figures. a (22 k…arrow_forwardA homogeneous 150-kg vertical bar AB is raised from rest at θ = 0° by means of the parallel swinging bars of negligible weight, with a constant moment M = 5 kN-m applied to the lower link at C. Determine the angular velocity and the angular acceleration of the links and the forces at A and B at the instantθ = X°. Take the angle θ = 37°.arrow_forwardplease define the system and provide the free-body diagram with x-y-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY