Direct methanol fuel cells (DMFCs) have shown some promise as a viable option for providing “green” energy to small electrical devices. Calculate for the reaction that takes place in DMFCs:
Use values of
Trending nowThis is a popular solution!
Chapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Loose Leaf For Integrated Principles Of Zoology
Applications and Investigations in Earth Science (9th Edition)
Campbell Essential Biology (7th Edition)
- The free energy change for a reaction, rG, is the maximum energy that can be extracted from the process as work, whereas rH is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities. Efficiency=rGrH100 Consider the hydrogen-oxygen fuel cell, where the net reaction is H2(g)+12O2(g)H2O(l) (a) Calculate the efficiency of the fuel cell under standard conditions. (b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water. (c) Does the efficiency depend on the state of the reaction product? Why or why not?arrow_forwardThe standard potential, E, for the reaction of Zn(s) and Cl2(g) is +2.12 V. What is the standard free energy change, rG, for the reaction?arrow_forwardHow does a geothermal power plant generate electricity? What are the advantages and disadvantages of geothermal power?arrow_forward
- Under standard conditions, what reaction occurs, if any, when each of the following operations is performed? a. Crystals of I2 are added to a solution of NaCl. b. Cl2 gas is bubbled into a solution of NaI. c. A silver wire is placed in a solution of CuCl2 d. An acidic solution of FeSO4 is exposed to air. For the reactions that occur, write a balanced equation and calculate ,G, and K at 25C.arrow_forwardCalculate G for the following reactions and state whether each reaction is spontaneous under standard conditions at 298 K. (a) 2Na(s) + H2SO4() Na2SO4(s) + H2(g) (b) Cu(s) + H2SO4() CuSO4(s) + H2(g)arrow_forwardWrite the equation for the reaction, if any, that occurs when each of the following experiments is performed under standard conditions. (a) Sulfur is added to mercury. (b) Manganese dioxide in acidic solution is added to liquid mercury. (c) Aluminum metal is added to a solution of potassium ions.arrow_forward
- How is the pH scale defined? What range of pH values corresponds to acidic solutions? What range corresponds to basic solutions? Why is pH = 7.00 considered neutral? When the pH of a solution changes by one unit, by what factor does the hydrogen ion concentration change in the solution? How is pOH defined? How arc pH and pOH for a given solution related? Explain.arrow_forward9.69 How are the roles of transmission substations and distribution substations in the electrical grid similar? How are they different?arrow_forwardThe major industrial use of hydrogen is in the production of ammonia by the Haber process: 3H2(g)+N2(g)2NH3(g) a. Using data from Appendix 4, calculate H, S, and G for the Haber process reaction. b. Is the reaction spontaneous at standard conditions? c. At what temperatures is the reaction spontaneous at standard conditions? Assume H and S do not depend on temperature.arrow_forward
- In the late eighteenth century Priestley prepared ammonia by reacting HNO3(g) with hydrogen gas. The thermodynamic equation for the reaction is HNO3(g)+4H2(g)NH3(g)+3H2O(g)H=637kJ (a) Calculate H when one mole of hydrogen gas reacts. (b) What is H when 10.00 g of NH3(g) are made to react with an excess of steam to form HN3(g) and H2 gases?arrow_forwardThe major industrial use of hydrogen is in the production of ammonia by the Haber process: 3H2(g)+N2(g)2NH3(g) a. Using data from Appendix 4, calculate H, S, and G for the Haber process reaction. b. Is the reaction spontaneous at standard conditions? c. At what temperatures is the reaction spontaneous at standard conditions? Assume H and S do not depend on temperature.arrow_forwardThe amount of manganese in steel is determined by changing it to permanganate ion. The steel is first dissolved in nitric acid, producing Mn2+ ions. These ions are then oxidized to the deeply colored MnO4 ions by periodate ion (IO4) in acid solution. a. Complete and balance an equation describing each of the above reactions. b. Calculate and G at 25C for each reaction.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning