(a)
Interpretation:
The reactions taking place in a galvanic cell are given. The sketch of the given galvanic cell and the value of
Concept introduction:
A galvanic cell is a device that converts chemical energy into electrical energy and therefore spontaneous reaction takes place in the galvanic cell. It consists of two half cells having one electrode each that is present in contact with the solution of its electrolyte.
To determine: The sketch of given galvanic cell with labeled cathode, anode, concentration of ions and direction of electron flow.
(b)
Interpretation:
The reactions taking place in a galvanic cell are given. The sketch of the given galvanic cell and the value of
Concept introduction:
A galvanic cell is a device that converts chemical energy into electrical energy and therefore spontaneous reaction takes place in the galvanic cell. It consists of two half cells having one electrode each that is present in contact with the solution of its electrolyte.
To determine: The value of
The value of equilibrium constant
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at 25C with [Fe2+] = 2.00 104 M and [La3+] = 3.00 103 M, what is the expected cell potential?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the standard potential for this cell? b. A nonstandard cell is set up at 25C with [Mg2+] = 1.00 105 M. The cell potential is observed to be 4.01 V. Calculate [Au3+] in this cell.arrow_forward
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [MnO4] = 0.010 M, [Br] = 0.010 M. [Mn2] = 0.15 M, and [H] = 1.0 M. 2MNO4(aq)+10Br(aq)+16H+(aq)2MN2(aq)+5Br2(l)+8H2O(l)arrow_forwardConsider the cell described below: Zn|Zn2+(1.00M)||Cu2+(l.00M)|Cu Calculate the cell potential after the reaction has operated long enough for the [Zn2+] to have changed by 0.20 mol/L. (Assume T=25C.)arrow_forward
- An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag+] = 1.0 M separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0 M NH3 that is also 0.010 M in Cu(NH3)42+, what is the cell potential at 25C? Cu2+(aq)+4NH3(aq)Cu(NH3)42+(aq)K=1.01013arrow_forwardIt took 150. s for a current of 1.25 A to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of 1+.arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forward
- Consider a battery made from one half-cell that consists of a capper electrode in 1 M CuSO4 solution and another half—cell that consists of a lead electrode in 1 M Pb(NO3)2 solution. (a) What are the reactions at the anode, cathode, and the overall reaction? (b) What is the standard cell potential for the battery? (c) Most devices designed to use dry-cell batteries can operate between 1.0 and 1.5 V. Could this tell he used to make a battery that could replace a dry-cell battery? Why or why not. (d) Suppose sulfuric acid is added to the half—cell with the lead electrode and some PbSO4(s) forms. Would the cell potential increase, decrease, or remain the same?arrow_forwardThe voltaic cell Cd(s)Cd2+(aq)Ni2+(1.0M)Ni(s) has a cell potential of 0.290 V at 25C. What is the concentration of cadmium ion? (Ecell=0.170V.)arrow_forwardWhat is the maximum work you can obtain from 30.0 g of nickel in the following cell when the cell potential is 0.97 V? Ni(s)Ni2+(aq)Ag+(aq)Ag(s)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax