Interpretation:
The reactions taking place in a fuel cell in a given mixture of
Concept introduction:
Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as,
The maximum amount of work that is done by an
The relationship between Gibbs free energy change and equilibrium constant is given by the formula,
To determine: The cell potential for the given fuel cell at the given temperature conditions
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
- Consider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forwardA voltaic cell is constructed using the reaction of chromium metal and iron(II) ions. 2 Cr(s) + 3 Fe2+(aq) 2 Cr3+(aq) + 3 Fe(s) Complete the following sentences: Electrons in the external circuit flow from the ________ electrode to the ______ electrode. Negative ions move in the salt bridge from the ________ half-cell to the ______ half-cell. The half-reaction at the anode is _______ and that at the cathode is ________.arrow_forwardA standard galvanic cell is constructed so that the overall cell reaction is 2A13++(aq)+3M(s)3M2+(aq)+2A1(s) Where M is an unknown metal. If G = 411 kJ for the overall cell reaction, identify the metal used to construct the standard cell.arrow_forward
- The half cells Sn2+(aq) |Sn(s) and Cl2(g) |Cl(aq) are linked to create a voltaic cell. (a) Write equations for the oxidation and reduction half-reactions and for the overall (cell) reaction. (b) Which half-reaction occurs in the anode compartment, and which occurs in the cathode compartment? (c) Complete the following sentences: Electrons in the external circuit flow from the ______ electrode to the ____ electrode. Negative ions move in the salt bridge from the _____ half-cell to the _____ half-cell.arrow_forwardDraw a diagram of each cell. Label the anode, the cathode, the species in each half-cell solution, the direction of electron movement in an external circuit, and thedirection of movement of ions within the cell. (a) Cu(s) | Cu2+(aq) || Fe2+(aq) |Fe(s) (b) Pt(s) | H2O2(aq), H+(aq) || Fe2+(aq), Fe3+(aq) | Pt(s)arrow_forwardFour voltaic cells are set up. In each, one half-cell contains a standard hydrogen electrode. The second half-cell is one of the following: (i) Cr3+(aq, 1.0 M)|Cr(s) (ii) Fea+(aq, 1.0M)|Fe(s) (iii) Cu2+(aq, 1.0M)|Cu(s) (iv) Mg2+(aq, 1.0M)|Mg(s) (a) In which of the voltaic cells does the hydrogen electrode serve as the cathode? (b) Which voltaic cell produces the highest potential? Which produces the lowest potential?arrow_forward
- You want to set up a series of voltaic cells with specific cell potentials. A Zn2+(aq, 1.0 M)| Zn(s) half-cell is in one compartment. Identify several half-cells that you could use so that the cell potential will be close to (a) 1.1 V and (b) 0.50 V. Consider cells in which the zinc cell can be either the cathode or the anode.arrow_forwardAnother type of battery is the alkaline zinc-mercury cell, in which the cell reaction is Zn(s) + HgO(s) Hg() + ZnO(s) E = + 1.35 V (a) What is the standard free energy change for this reaction? (b) The standard free energy change in a voltaic cell is the maximum electrical energy that the cell can produce. If the reaction in a zinc-mercury cell consumes 1.00 g mercury oxide, what is the standard free energy change? (c) For how many hours could a mercury cell produce a 10-mA current if the limiting reactant is 3.50 g mercury oxide?arrow_forwardA voltaic cell is constructed using the reaction Mg(s) + 2H+(aq) Mg2+(aq) + H2(g) (a) Write equations for the oxidation and reduction half-reactions. (b) Which half-reaction occurs in the anode compartment, and which occurs in the cathode compartment? (c) Complete the following sentences: Electrons in the external circuit flow from the ________ electrode to the ______ electrode. Negative ions move in the salt bridge from the ______ half-cell to the ______ half-cell. The half-reaction at the anode is ____, and that at the cathode is _____.arrow_forward
- The following overall chemical reaction occurs in an electrochemical cell. Overall chemical equation: Zn(s) + PbSO4(s) Zn2+(aq) + Pb(s) + SO42(aq) Use cell notation to describe the electrochemical cell.arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardConsider a galvanic cell based on the following half-reactions: a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at 25C with [Fe2+] = 2.00 104 M and [La3+] = 3.00 103 M, what is the expected cell potential?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning